
Calculus 1 - Antiderivatives and Integrals

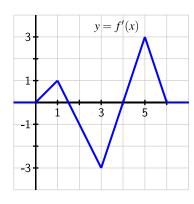
Professor:

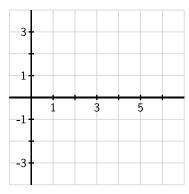
Dr. Joanna Bieri joanna_bieri@redlands.edu

Part 1 - applications Biological activity in water is reflected in the rate at which carbon dioxide, CO_2 , is added or removed. Plants take CO_2 out of the water during the day for photosyntheses and put CO_2 into the water at night. Animals put CO_2 into the water all the time as they breathe. The figure shows the rate of change of the CO_2 level in a pond where t measures the time since dawn. At dawn there was 2.600 mmol of CO_2 per liter of water.

The following table gives the rate at which CO_2 is entering or leaving the water

t	f(t)	t	f(t)	t	f(t)	$\mid t \mid$	f(t)	$\mid t \mid$	f(t)	t	f(t)
0	0.000	4	-0.039	8	-0.026	12	0.000	16	0.035	20	0.020
2	-0.044	6	-0.035	10	-0.020	14	0.045	18	0.027	22	0.012

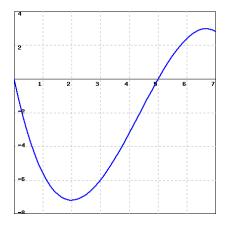

1. What are the units of f(t)? In words explain what would the following integral represent?


$$\int_0^3 f(t) \ dt$$

- 2. At what time was the CO_2 level the lowest? Highest?
- 3. Estimate how much CO_2 enters the pond during the night (t = 12 to t = 24).
- 4. Estimate the CO_2 level at dusk (twelve hours after dawn).
- 5. Does the CO_2 level appear to be approximately in equilibrium? (ie. after an entire day does the CO_2 remain about the same?)

Part 2 - Drawing Antiderivatives

1. On the graph to the below you see F(x) = f'(x). Using the grid to the right draw possible antiderivatives. How many antiderivatives does f'(x) have?



- \bullet On what interval(s) is F an increasing function? On what intervals is f decreasing?
- On what interval(s) is F concave up? concave down?
- \bullet At what point(s) does F have a relative minimum? a relative maximum?
- Recall that

$$F(1) - F(0) = \int_0^1 f(x) \, dx$$

- If F(0) = 1, then what is the exact value of F(1)?
- 2. Consider the graph of the function f(x) = F'(x) below and answer the following questions.

 \bullet Estimate the integral

$$\int_0^7 f(x) \ dx$$

- If the antitderivative F(x) has the value F(0) = 30, estimate F(7).
- Sketch a rough graph of the antiderivative F(x) with the information given above.

Part 3 - Using Antiderivatives to Solve Integrals

For each of the integrals below, first state if the integral is a Definite or Indefinite integral then evaluate it by finding the antiderivative and using the Fundamental Theorem if it applies.

$$f(x) = x^{3}$$

$$g(x) = \frac{1}{x^{2}}$$

$$h(x) = \cos(x)$$

$$k(x) = e^{x}$$

$$\int_{1}^{2} f(x) + 2g(x) \ dx$$

$$\int k(x) - 1 \ dx$$

$$\int f(x)g(x) \ dx$$

4.

$$\int_0^\pi h(x) \ dx$$

5. Why would we have trouble evaluating

$$\int_0^1 g(x) \ dx$$