
Calculus 1 - Antiderivatives and Integrals - solns.

Professor:

Dr. Joanna Bieri

joanna_bieri@redlands.edu

Part 1 - applications Biological activity in water is reflected in the rate at which carbon dioxide, CO_2 , is added or removed. Plants take CO_2 out of the water during the day for photosyntheses and put CO_2 into the water at night. Animals put CO_2 into the water all the time as they breathe. The figure shows the rate of change of the CO_2 level in a pond where t measures the time since dawn. At dawn there was 2.600 mmol of CO_2 per liter of water.

The following table gives the rate at which CO_2 is entering or leaving the water

	t	f(t)	t	f(t)	t	f(t)	t	f(t)	t	f(t)	t	f(t)
		0.000										
,	2	-0.044	6	-0.035	10	-0.020	14	0.045	18	0.027	22	0.012

(1) What are the units of f(t)? In words explain what would the following integral represent?

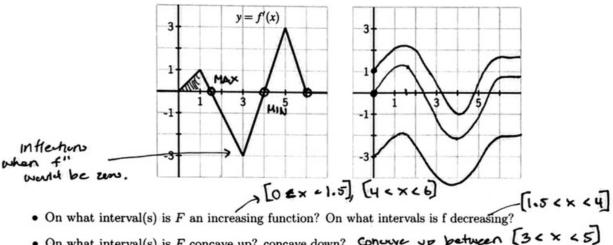
The integral gives the take co_2 f(t) units removed from the pond in the first 3 hours measured in model like. $\int_0^3 f(t) dt$ towns measured in model like.

2) At what time was the CO_2 level the lowest? Highest?

Lowest at t = 12 hrs Highest of t = 0.24.

3. Estimate how much CO_2 enters the pond during the night (t = 12 to t = 24). Estimate area under curve OR use LHS, RHS.

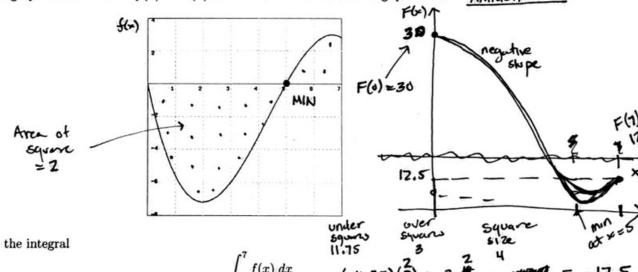
Estimate the CO₂ level at dusk (twelve hours after dawn).


5. Does the CO2 level appear to be approximately in equilibrium? (ie. after an entire day does the CO2 remain about the same?)

From t=12 to t=24: 0t=2(.045 + .035 + .027 + .021 + .012 +0)(2) = .28 mm. | luker (0 + .45 + .035 + .017 + .021 + .012)(2) = .28 sam.

(+) F(0) = 2.6 then subtract (-.044 -.031 -.035 -.026 -.020 -0)(z) = =328 F(12) - 2.272.

Part 2 - Drawing Antiderivatives


1. On the graph to the below you see F(x) = f'(x). Using the grid to the right draw possible antiderivatives. How many antiderivatives does f'(x) have? There would be an in time number of them ... \pm constant.

- On what interval(s) is F concave up? concave down? Concave up between [3 < x < 5] down [6 < x < 3]
- MAX X=Y2 • At what point(s) does F have a relative minimum? a relative maximum? Win $\times = 4$
- · Recall that

$$F(1) - F(0) = \int_0^1 f(x) dx$$
 $F(1) = F(0) + \frac{1}{2} = 1.5$

- If F(0) =1, then what is the exact value of F(1)?
- 2. Consider the graph of the function f(x) = F'(x) below and answer the following questions. Antiden vative.

- Estimate the integral
- If the antitderivative F(x) has the value F(0) = 30, estimate F(7).
- F(7)-F(10) = 5,7(x) dx
- Sketch a rough graph of the antiderivative F(x) with the information given above.

Part 3 - Using Antiderivatives to Solve Integrals

For each of the integrals below, first state if the integral is a Definite or Indefinite integral then evaluate it by finding the authorizative and using the Fundamental Theorem if it applies.

An Indevive No.

$$f(x) = x^{3}$$

$$g(x) = \frac{1}{x^{2}}$$

$$h(x) = \cos(x)$$

$$h(x) = \cos(x)$$

$$h(x) = e^{x}$$

$$k(x) = e^{x}$$