- 1. Water is being pumped into a vertical standing cylinder of radius 5m and height 20m at a rate of $3\frac{m^3}{min}$. How fast is the water level inside the cylinder rising when the cylinder is $\frac{1}{2}$ full?
- 2. A Ferris wheel has a diameter of 135m and is always moving around in a circle. One revolution of the ride takes 27 minutes. One minute into the ride a passenger is rising upward at a rate of $0.06\frac{m}{s}$. How fast is the passenger going in the horizontal direction at that time?
- 3. A rectangular block with a square base is being squished is sich a way that its height is decreasing at a rate of $2\frac{cm}{min}$ wile its volume remains constant. At what rate is the edge of it base, x, increasing when x = 30cm and y = 20cm?

IMPORTANT STEPS:

- 1. Draw a picture.
- 2. Write down an equation for the given information. This should be information about a rate of change that is given.
- 3. Write down an equation that will answer the problem. This should be something you are trying to find the rate of change of.
- 4. Put the two equations together. This should result in taking a derivative using the chain rule and an equation that relates the rates.
- 5. Plug in the information you have and solve for the rate that you want.
- 6. Answer the full question. Sometimes this means plugging back in to previous equations.
- 1. Water is being pumped into a vertical standing cylinder of radius 5m and height 20m at a rate of $3\frac{m^3}{min}$. How fast is the water level inside the cylinder rising when the cylinder is $\frac{1}{2}$ full?
- 2. A Ferris wheel has a diameter of 135m and is always moving around in a circle. One revolution of the ride takes 27 minutes. One minute into the ride a passenger is rising upward at a rate of $0.06\frac{m}{s}$. How fast is the passenger going in the horizontal direction at that time?
- 3. A rectangular block with a square base is being squished is sich a way that its height is decreasing at a rate of $2\frac{cm}{min}$ wile its volume remains constant. At what rate is the edge of it base, x, increasing when x = 30cm and y = 20cm?

IMPORTANT STEPS:

- 1. Draw a picture.
- 2. Write down an equation for the given information. This should be information about a rate of change that is given.
- 3. Write down an equation that will answer the problem. This should be something you are trying to find the rate of change of.
- 4. Put the two equations together. This should result in taking a derivative using the chain rule and an equation that relates the rates.
- 5. Plug in the information you have and solve for the rate that you want.
- 6. Answer the full question. Sometimes this means plugging back in to previous equations.