MATH 121 Practice Exam 4

November 24, 2020

Total

/0

Problem 1 (0 points)

Evaluate the following integrals

$$\int \frac{1+z^2}{z^6} \, dz$$

$$\int \frac{1}{x} + 3e^x \, dx$$

$$\int_1^2 \frac{4}{x^2} \, dx$$

$$\int_0^\pi \cos y + \sin y \, dy$$

$$\int_{-a}^{a} x^5 \ dx$$

Problem 2 (0 points)

Find the value of

$$\int_2^5 f(x) \ dx$$

using the following information:

$$\int_5^0 3f(x) dx = 9.$$

$$\int_0^2 f(x) dx = 5$$

$$\int_0^2 f(x) \ dx = 5$$

Problem 3 (0 points)

Explain in words what the integral represents, give units.

$$\int_0^2 f(x) \ dx$$

where f(x) is the rate at which you drink coffee the morning before an exam, measured in gallons per minute and x is measured in minutes, with x = 0 corresponding to 6am when you wake up.

$$\frac{1}{b-a} \int_{a}^{b} f(x) \ dx$$

where f(x) is the amount of money, measured in dollars, in your bank account on day x.

Problem 4 (0 points) Find the **general antiderivative** of the following functions:

- (a) $f(x) = x^2$
- (b) $g(x) = 2\sin x$
- (c) $h(x) = e^x + 2x + 1$

Problem 5 (0 points)

Given $f(x) = x^3 + 3x^2 - 9x + 6$, do the following:

(a) Find all local maxima and minima.

(b) Find all inflection points

(c) Now consider the domain $0 \le x \le 2$. Find the global maximum and minimum.

- (d) For the domain $0 \le x \le 2$, what are the best possible bounds?
- (e) Estimate the area under the curve using the average of the LEFT and RIGHT hand sums, with $0 \le x \le 4$ and n = 4. (SHOW YOUR WORK)

(f) Find the exact value of $\int_0^4 f(x) dx$ using the antiderivative and the fundamental theorem of calculus. (SHOW YOUR WORK)

Problem 6 (0 points)

Find the area under the line y = -2x + 4 and above the x axis for the domain $0 \le x \le 2$ by setting up and evaluating a definite integral. Then use basic geometry to verify that your answer is correct, by thinking of the area in terms of rectangles and/or triangles. (Draw a picture)

Problem 7 (0 points)

A rocket traveling at 87m/s is accelerated to 132m/s over a time of 15 seconds. What is it's displacement during this time? Use a differential equation to solve this problem.

A pilot stops a plane in 484 meters using an acceleration of $-8m/s^2$. How fast was the plane moving before braking began? How long did it take the plane to come to a complete stop? Use a differential equation to solve this problem.