Calculus 1 - Riemann Sums

Professor:

Dr. Joanna Bieri

joanna_bieri@redlands.edu

PART 1: For each function listed below please do the following:

- 1. Find an estimate for the Left and Right Hand sum using n = 5 subdivisions. Write down LHS = and RHS =. (Do this by hand.)
- 2. Draw a graph of the actual function and plot the Left and Right hand estimates that you found above. Be sure to clearly label your graph.
- 3. How far apart are your estimates? Write down difference=
- 4. Now use the website: Riemann Sum Applet Click Here to answer the rest of the questions.
 - Enter the function in the integrand
 - Move the blue dots on the graph to match the limits of integration
 - Move the slider to the right number of subintervals
 - Check the box next to "Relative" and use the relative approximation when the slider is all the way left and all the way right.
- 5. Find an estimate for the Left and Right Hand sum using n = 10, 15, 20 subdivisions. Write down LHS = and RHS =.
- 6. How far apart are your estimates with the larger n-values? Write down the difference.
- 7. Compare the values you get to the actual value of the integral given.
- 8. As you increase the number of subintervals is your estimate getting better or worse? How could we get an exact answer.

A.

$$f(x) = \sin(x) \ 0 \le x \le 5$$

Check your answer using the real values:

$$\int_0^5 \sin(x) \ dx = 0.71634$$

В.

$$f(x) = -x^2 + 4 \ 0 \le x \le 2$$

Check your answer using the real values:

$$\int_0^2 (-x^2 + 4) \ dx = 5.3333333$$

C.

$$f(x) = e^{-x} \ 0 \le x \le 10$$

Check your answer using the real values:

$$\int_0^{10} e^{-x} \, dx = 0.9995$$

PART 2: Knowing that the integral represents the area under the curve, answer the following questions.

A. Consider the equation for the upper half circle of radius r = 1 given by $y = \sqrt{(1 - x^2)}$. What should the actual value of the following integral be:

$$\int_{-1}^{1} \sqrt{(1-x^2)} \ dx =$$

Compute the LHS and RHS for $-1 \le x \le 1$ choosing just one reasonable *n*-value. Does this match with what you know the answer should be?

B. Consider the integral:

$$\int_0^{2\pi} \sin\left(x\right) \, dx =$$

What should the value of this integral be? HINT: Graph it! Compute the LHS and RHS for $0 \le x \le 2\pi$ choosing just one reasonable n-value. Does this match with what you know the answer should be?