Calculus II - Integration Practice - Solutions

Professor:

Dr. Joanna Bieri

joanna_bieri@redlands.edu

1.
$$\int (2t+7)^{72} dt$$

Do a substitution. Let u=2t+7 then du=2dt and subbing in we find $\int \frac{1}{2}u^{72}\ du=\frac{1}{2}\frac{1}{73}(2t+7)^{73}$

2.
$$\int y \left(\ln(y) \right) dy$$

Integration by parts. Let $u=\ln(y)$ and dv=y then $du=\frac{1}{y}dy$ and $v=\frac{1}{2}y^2$. Subbing into the integration by parts formula we get $\frac{1}{2}y^2\ln(y)-\frac{1}{2}\int y\ dy=\frac{1}{2}y^2\ln(y)-\frac{1}{4}y^2+c$

3.
$$\int \frac{x+1}{x^2+6x} dx$$

Use partial fractions. Factor the denominator into x(6+x) then write

$$\frac{x+1}{x(6+x)} = \frac{A}{x} + \frac{B}{6+x}$$

Multiply through by the denominator from the LHS x+1=A(6+x)+Bx and gather terms x+1=(A+B)x+6A then balancing the sides wer see that $(A+B)=1\to A=1-B$ and $6A=1\to A=\frac{1}{6}$ $B=\frac{5}{6}$ so we can rewrite our integral as

$$\frac{1}{6} \int \frac{1}{x} dx + \frac{5}{6} \int \frac{1}{6+x}$$

giving a solution $\frac{1}{6} \ln |x| + \frac{5}{6} \ln |6+x| + c$

4.
$$\int \frac{1}{x^2 + 4x + 4} dx$$

Here we can use algebra to simplify the denominator. $x^2 + 4x + 4 = (x+2)^2$ so our integral is $\int \frac{1}{(x+2)^2} dx = \int (x+2)^{-2} dx = -\frac{1}{x+2} + c$

5.
$$\int \frac{x}{(1+x^2)^2} dx$$

Substitution. Let $u=1+x^2$ then $du=2x\ dx$ and we see that the x in the numerator will cancel to give us $\int \frac{1}{2u^2}\ du = \frac{-1}{u} + c = \frac{-1}{x+2} + c$

6.
$$\int se^{s^2} ds$$

Substitution. Let $u=s^2$ then $du=2s\ ds$ and subbing in this gives $\int \frac{1}{2}e^u\ du=\frac{1}{2}e^{s^2}+C$

7.
$$\int \frac{r^3 + r^2 + 1}{r} dr$$

Algebra helps us simplify: $\int r^2 + r + \frac{1}{r} dr = \frac{1}{3}r^3 + \frac{1}{2}r^2 + \ln|r| + c$

8.
$$\int t \sin(t^2) dt$$

Do a substitution. Let $u=t^2$ then du=2tdt and substituting we find $\int \frac{1}{2}\sin(u)\ du=\frac{-1}{2}\cos t^2+c$

9.
$$\int x \sin(x) dx$$
Integration by parts:

let u = x and $du = \sin x dx$. Subbing into the formula we get $-x \cos x + \int \cos x \, dx = -x \cos x + \sin x + c$.

10.
$$\int (t+2)\sqrt{2+3t} \ dt$$

10. $\int (t+2)\sqrt{2+3t}\ dt$ Do a substitution. Let u=2+3t then du=3dt. After some simplification this leads to

$$\frac{1}{9} \int (u^{(\frac{3}{2})} + 4u^{(\frac{1}{2})} =$$

$$\frac{2}{45} (2+3t)^{(\frac{5}{2})} + \frac{8}{27} (2+3t)^{(\frac{3}{2})} + c$$

11.
$$\int \frac{x^3 + 7x^2 + 10x + 1}{x^2 + 7x + 10} dx$$

Long division gives us:

$$\int x \, dx + \int \frac{1}{(x^2+7x+10)} \, dx \text{ then we can evaluate the first integral and do partial fractions to find} \\ \frac{1}{2}x^2 - \frac{1}{3} \int \frac{1}{x+5} \, dx + \frac{1}{3} \int \frac{1}{x+2} \, dx = \\ \frac{1}{2}x^2 + \frac{1}{3} \ln \left| \frac{x+2}{x+5} \right| + c$$

12.
$$\int e^y \cos(y) \ dy$$

12. $\int e^y \cos(y) \ dy$ Do integration by parts twice and then solve for the original integral to get $\frac{1}{2}e^y \left[\sin(y) + \cos(y)\right] + c$

13.
$$\int \frac{p^2+2}{p^2+p} \, dp$$

Long division gives
$$\int dp + \int \frac{2-p}{p^2+p} \, dp$$
. Then do partial fractions to get $\int dp + \int \frac{2}{p} \, dp - \int \frac{3}{p+1} \, dp = p + 2 \ln |p| - 3 \ln |p+1| + c$

$$\int dp + \int \frac{2}{p} dp - \int \frac{3}{p+1} dp = p + 2 \ln|p| - 3 \ln|p+1| + c$$

14.
$$\int \frac{x^3 \sin(x)}{x \sin(x)} dx$$

This one simplifies nicely to
$$\int x^2 dx = \frac{1}{3}x^3 + c$$

15.
$$\int \cos^4(t) dt$$

Use the trick for even powers of sine or cosine. Here we use the identity $\cos^2(t) = \frac{1}{2}(1 + \cos(2t))$

$$\int \cos^2(t)\cos^2(t) dt = \int \frac{1}{2}(1 + \cos(2t))\frac{1}{2}(1 + \cos(2t)) dt = \frac{1}{4}\int 1 + 2\cos(2t) + \cos^2(2t) dt.$$

 $\frac{1}{4}\int 1+2\cos(2t)+\cos^2(2t)\ dt$. The first two integrals we can just do, but we need to use the identity again for the third term in the integrand to

$$\begin{array}{l} \frac{1}{4} \left[t + \sin(2t) + \frac{1}{2} \int (1 + \cos(4t)) \right] dt = \\ \frac{1}{4} \left[t + \sin(2t) + \frac{1}{2} (t + \frac{1}{4} \sin(4t)) \right] + c \end{array}$$

16.
$$\int s^2 (1+2s^3)^2 ds$$

16. $\int s^2 \left(1+2s^3\right)^2 \,ds$ Do a substitution. Let $u=1+2s^3$ then $du=6s^2ds$ and subbing in gives

$$\int \frac{1}{6}u^2 du = \frac{1}{18} \left(1 + 2s^3 \right)^3 + c$$

17.
$$\int \sin^3(x) \ dx$$

17. $\int \sin^3(x) \, dx$ Use the trick for odd powers of sine and consine. Break off the odd piece to get

$$\int \sin(x) \sin^2(x) dx \text{ then use the identity}$$

$$\sin^2(x) + \cos^2(x) = 1 \text{ to find}$$

 $\int_{\mathcal{Q}} \sin(x)(1-\cos^2(x)) \ dx \text{ which allows for a substitution. Let } u = \cos(x) \text{ then } du = \sin(x)dx \text{ and subbing in gives}$ $\int (1 - u^2) \ du = \cos(x) - \frac{1}{3}\cos^3(t) + c$

18.
$$\int \sin(x) \sec(x) \ dx$$

18. $\int \sin(x) \sec(x) \ dx$ Use the identity $\sec(x) = \frac{1}{\cos(x)}$ and then substitute $u = \cos(x)$ to get

$$-\int \frac{1}{u} du = -\ln|\cos(x)| + c.$$

19.
$$\int \sec^2(y) \ dy$$

This is a really weird substitution, but a good one to know... Let $u = \tan x$ then $du = \sec^2(x) dx$ so the whole

 $\int\limits_{-d}^{d} du = u + c = \tan(x) + c \text{ Alternatively you could just remember that the derivative of tangent is secant squared: } \\ \frac{d}{dx} \tan(x) = \frac{1}{\cos^2(x)} = \sec^2(x) \text{ (proved by the derivative quotient rule) and then you just know the answer.}$

20.
$$\int x^2 e^x dx$$

Do integration by parts twice. Let $u=x^2$ and $dv=e^x dx$. After subbing into the formula we get: $x^2e^x-\int 2xe^x dx$.

Then
$$u=2x$$
 and $dv=e^x$ to get $x^2e^x-2xe^x+2e^x+c$