MATH 122 Practice Exam 2

Joanna Bieri

Instructions:

- 1. Print your name on this page in the space provided.
- 2. You must CIRCLE your FINAL answer for full credit.
- 3. Show all work, write down the formulas used and explain in words what you are doing, partial credit will be given for written work only. Answers with no work will NOT be given full credit. Neatness counts.
- 4. Use of notes, books, or calculators is NOT ALLOWED.
- 5. You may have one sheet of paper for notes and formulas.
- 6. Good luck!

Important Ideas on this exam:

- 1. General Integration Methods: Substitution, Integration by Parts, Trigonometric Substitution, Algebraic Simplification, Powers of $\sin(x)$ and $\cos(x)$
- 2. Numerical Integration Approximations and Error
- 3. Finding Area and Volume using Integration.
- 4. Volumes of Revolution.
- 5. Applications to Physics: Mass, Work, and Pressure.

Score	
1	/30
2	/10
3	/10
4	/10
5	/10
6	/10
7	/10
8	/10
Total	/100

Coome

Problem 1 (30 points)

Complete the square and solve the resulting integral.

$$\int \frac{1}{y^2 + 2y + 5} \, dy$$

[HINT: You will need to use a trigonometric substitution to evaluate the integral, make sure to draw your triangle]

Evaluate the following integrals using integration by parts.

$$\int x \ln(x) \ dx$$

Evaluate the following integral using substitution.

$$\int_0^1 \frac{\cos(x)}{1 - \sin(x)} \ dx$$

Problem 2 (10 points)

Evaluate the following improper integral.

$$\int_{1}^{3} \frac{1}{(x-2)^2} \ dx$$

Problem 3 (10 points)

Evaluate the following indefinite integral using the method of your choice. You must state what method you are using!

$$\int \frac{\cos(x)}{1 + \sin(x)} \, dx$$

Evaluate the following definite integral using the method of your choice. You must state what method you are using!

$$\int_0^1 te^{2t} dt$$

Problem 4 (10 points)

Sketch the function $f(x) = -x^3 + 2$, then answer the following questions:

- a. How would you use RIGHT(5) to evaluate $\int_0^1 f(x) dx$? Sketch RIGHT(5) on your graph of f(x).
- b. Would RIGHT(5) be an underestimate or overestimate of the value of the integral?
- c. How would you find MID(5)? (Just say in words what you would have to do.)

Problem 5 (10 points)

Draw the area bounded by the curves 3x + y = 6 and $y = x^2 - 4$, then use integration to find the value for the area bounded by the two curves.

Problem 6 (10 points)

Find the volume of the solid generated by rotating the region bounded by $y=x^2,\ y=0,\ y=1$ about the line y=-2.

Problem 7 (10 points)

A 10 meter uniform chain with a mass of 5 kilograms per meter is dangling from the roof of a building. How much work is needed to pull the chain up onto the top of the building? (acceleration of gravity: $9.8 \frac{m}{s^2}$)

Problem 8 (10 points)

Find the mass of the region bounded by $y = \sin(x)$ and y = 0 between x = 0 and $x = \pi$, if the density is $\delta(x) = x \frac{g}{cm^2}$.