
.
.
.

.

.
.
.

.

Intermediate Data Science
Introduction to Machine Learning

Joanna Bieri DATA201

.
.
.

.

.
.
.

.

Important Information

• Email: joanna_bieri@redlands.edu
• Office Hours take place in Duke 209 – Office Hours Schedule
• Class Website
• Syllabus

mailto:joanna_bieri@redlands.edu
https://joannabieri.com/schedule.html
https://joannabieri.com/data201.html
https://joannabieri.com/data201/IntermediateDataScience.pdf

.
.
.

.

.
.
.

.

What is Machine Learning

https://en.wikipedia.org/wiki/Machine_learning

Machine learning (ML) is a field of study in artificial intelligence
concerned with the development and study of statistical algorithms
that can learn from data and generalise to unseen data, and thus
perform tasks without explicit instructions.

Broadly speaking it is a field that was built out of statistical modeling.
Even though there has been a boom in machine learning in the past few
years, it is a field that has actually been around since the early 1900.

.
.
.

.

.
.
.

.

Machine Learning and Data Science

In the data science lifecycle you often move toward modeling and
prediction after your initial EDA (exploratory data analysis). You have
looked at the data and noticed patterns and start to wonder “can I
predict something using this data?”. In some cases you will use
machine learning as part of this process.

Some examples include:
• Linear or logistic regression
• Time series and forecasting
• Pattern recognition
• Dimensionality reduction
• Neural networks and Classifiers

.
.
.

.

.
.
.

.

ML Process

1 Acquire and clean the data
2 Exploratory data analysis
3 Test - Train - Validate data split
4 Data wrangling - feature engineering
5 Model Training
6 Hyperparameter Tuning
7 Model Testing
8 Model Deployment or Publication

.
.
.

.

.
.
.

.

Check your installs:

Python version: 3.13.5 | packaged by conda-forge | (main, Jun 16 2025, 08:27:50) [GCC 13.3.0]
pandas version: 2.3.2
matplotlib version: 3.10.5
NumPy version: 2.3.2
SciPy version: 1.16.2
IPython version: 9.5.0
scikit-learn version: 1.7.2

.
.
.

.

.
.
.

.

Check your installs:

If you are missing any of these packages then please install them!

!conda install -y pacakge_name

.
.
.

.

.
.
.

.

Example ML project

We are going to explore a start to finish mini-machine learning project.
This is like your “Hello World” introduction. As we move through the
rest of the semester we will go into much more detail about model
selection, training, etc.

.
.
.

.

.
.
.

.

Classification

One thing that machine learning models tend to be very good at is
classification tasks. Classification is when a model takes input variables
for an observation and figures out how to classify the observation from
that data. For example, given a photo is it a cat or a dog?

.
.
.

.

.
.
.

.

The Data

The Iris dataset contains measurements of iris flowers from three
different species. The dataset was first introduced by Sir Ronald A.
Fisher in 1936. The measurements themselves were originally collected
by Edgar Anderson, a botanist who studied the morphology of iris
flowers from three related species.

.
.
.

.

.
.
.

.

The Data

Number of samples: 150 Number of features or variables: 4 (all
numeric and continuous)

Features:
• sepal length (in cm)
• sepal width (in cm)
• petal length (in cm)
• petal width (in cm)

Target (species):
• Iris setosa
• Iris versicolor
• Iris virginica

.
.
.

.

.
.
.

.

The Data

We want to see if we can use the Features (variables) to predict the
Target or the species of iris.

.
.
.

.

.
.
.

.

Load the data

sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) species
0 5.1 3.5 1.4 0.2 setosa
1 4.9 3.0 1.4 0.2 setosa
2 4.7 3.2 1.3 0.2 setosa
3 4.6 3.1 1.5 0.2 setosa
4 5.0 3.6 1.4 0.2 setosa
...
145 6.7 3.0 5.2 2.3 virginica
146 6.3 2.5 5.0 1.9 virginica
147 6.5 3.0 5.2 2.0 virginica
148 6.2 3.4 5.4 2.3 virginica
149 5.9 3.0 5.1 1.8 virginica

.
.
.

.

.
.
.

.

Explore the data

This data is already in pretty good shape. You will see from the
.describe() that there are no nans in any of the 150 observations.

Index(['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)',
'petal width (cm)', 'species'],

dtype='object')

.
.
.

.

.
.
.

.

Explore the data

sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)
count 150.000000 150.000000 150.000000 150.000000
mean 5.843333 3.057333 3.758000 1.199333
std 0.828066 0.435866 1.765298 0.762238
min 4.300000 2.000000 1.000000 0.100000
25% 5.100000 2.800000 1.600000 0.300000
50% 5.800000 3.000000 4.350000 1.300000
75% 6.400000 3.300000 5.100000 1.800000
max 7.900000 4.400000 6.900000 2.500000

.
.
.

.

.
.
.

.

Explore the data

From looking at the value_counts() we see our data is well balanced.
Balanced data is important in prediction. If we only had, say, three or
four observations of the setosa species we likely would not be very
accurate in predicting that class.

.
.
.

.

.
.
.

.

Explore the data

species
setosa 50
versicolor 50
virginica 50
Name: count, dtype: int64

.
.
.

.

.
.
.

.

Explore the data

We also want to look at some visualizations. Does it seem reasonable
that the variables we have could be used for classification? Are there
strange outliers?

Here we will do a pairplot and color it by the thing we want to predict
(‘species’)

.
.
.

.

.
.
.

.

Explore the data

.
.
.

.

.
.
.

.

Train - Test Split

Before we get too deep into the analysis, but after we are fairly certain
that our data is clean and could be usefull for classification, we want to
do a train test split.

.
.
.

.

.
.
.

.

WHY SPLIT?

If you trained a prediction model using all the data and then test it
using the same data there is a real concern that the model will just
memorize the data. It will get really great at predicting the data you
have, but will be useless at predicting new, future, data. This is just
like taking an exam!

.
.
.

.

.
.
.

.

WHY SPLIT?

• If you had a teacher who gave you the whole exam (all the data)
and then said, learn this. The best way to do that is to memorize
the exam. Any you would get really good at taking that exam.
But how good would you be at applying that knowledge to new
scenarios? Probably not great!

.
.
.

.

.
.
.

.

WHY SPLIT?

• Now instead imagine you have a teacher that gives you lots of
practice problems (a training set) and then choose a new set of
problems on the exam for you to apply your knowledge to (a test
set). If you can pass the test, then it is fairly likely that you will be
able to apply your knowledge to new scenarios and memorizing the
training set would not help.

.
.
.

.

.
.
.

.

WHY SPLIT?

So we split our data into Testing, Training, and sometimes Validation
sets:

Training - about 80% of the data that the model gets to see when
learning. (homework) Validation - about 10% of the data that the
scientists uses to tune the model (like a practice exam) Testing -
about 10% of the data that is the real text to see how accurate your
model actually was (a final exam)

You want to be the best teacher you can be!

.
.
.

.

.
.
.

.

Train - Test Split

The train_test_split function from sklearn.model_selection
helps us separate our data randomly. Here is how it’s used:

X_train,
X_test,
y_train,
y_test = train_test_split(df[data_cols],

df[target_cols],
test_size=0.20,
random_state=random_seed)

.
.
.

.

.
.
.

.

Train - Test Split

You send in as many data sets as you want. Here we send in our
features or (variables) the 𝑋 data, and our target (predictions or
species) the 𝑦 data. In genera we want a function that tells us

𝑦 = 𝐹(𝑋)

where we send in 𝑋 and get out 𝑦. We can do optional arguments,
here test_size = .2 says to use 20% of the data for testing, and setting
a random_seed makes the results reproducible.

.
.
.

.

.
.
.

.

Train - Test Split
from sklearn.model_selection import train_test_split

data_cols = ['sepal length (cm)',
'sepal width (cm)',
'petal length (cm)',
'petal width (cm)']

target_cols = ['species']

random_seed = 42
X_train, X_test, y_train, y_test =

train_test_split(df[data_cols],
df[target_cols],
test_size=0.20,
random_state=random_seed)

.
.
.

.

.
.
.

.

Always Check Your Shapes!

Data shape mismatch errors are very common and very frustrating.
You may as well check to see that the data shapes are what you expect.

.
.
.

.

.
.
.

.

Always Check Your Shapes!

First we see that the 𝑋 data has 4 columns and this matches our four
input variables. We see that training has 120 observations and testing
has 30. This means 20% of the data really did end up in testing and
80% in training. If we look at the 𝑦 data it has one column - just the
species we want to predict.

X_train shape: (120, 4)
y_train shape: (120, 1)
X_test shape: (30, 4)
y_test shape: (30, 1)

.
.
.

.

.
.
.

.

Always Check Your Shapes!

Often you have to reshape because the ML algorithms expect the
data in a certain format. In our case we want our training data to be
interpreted as a list of predictions, no extra columns. So we reshape it:

y_test = y_test.to_numpy().reshape(-1)
y_train = y_train.to_numpy().reshape(-1)

y_train shape: (120,)
y_test shape: (30,)

.
.
.

.

.
.
.

.

Model Selection

At this point we could choose a wide range of possible models. We will
do a very simple model called K-Nearest Neighbors (KNN). KNN is one
of the simplest ways for a computer to make predictions based on data.
When the computer sees a new example, it looks at the K most similar
examples it has already seen - its “nearest neighbors”. If most of those
neighbors belong to a certain group, the computer guesses that the
new example belongs to that group too. For instance, if most nearby
flowers are iris setosa, it will predict the new flower is also setosa.

.
.
.

.

.
.
.

.

Model Selection

Let’s see this in action in 2-dimensions.

.
.
.

.

.
.
.

.

Model Selection

If we look at the nearest neighbors around the new point we see that it
is very likely a member of Versicolor. We can choose how many
neighbors to consider. I often start with just 1 or 2. The distance to
the nearest neighbor can be calculated quite a few ways, as the crow
flies, taxi cab on a grid, other.

.
.
.

.

.
.
.

.

Define the model in Python

from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=1)

.
.
.

.

.
.
.

.

Train the Model
For KNN this is a simple as storing the training data and species types
so that when it gets a new observation it has something to compare to.

knn.fit(X_train, y_train)

n_neighbors 1
weights 'uniform'
algorithm 'auto'
leaf_size 30
p 2
metric 'minkowski'
metric_params None
n_jobs None

.
.
.

.

.
.
.

.

KNeighborsClassifier Important Parameters Explained

n_neighbors (default = 5) - The K in KNN - the number of nearest
neighbors the algorithm looks at when making a prediction.
- Example: n_neighbors=3 - it looks at the 3 closest points.

.
.
.

.

.
.
.

.

KNeighborsClassifier Important Parameters Explained

weights (default = ‘uniform’) - Determines how neighbors are
counted:
- 'uniform' - all neighbors are equally important.
- 'distance' - closer neighbors count more than farther ones.

.
.
.

.

.
.
.

.

KNeighborsClassifier Important Parameters Explained

p (default = 2) - The power parameter for the Minkowski distance:
- p = 1 - Manhattan distance
- p = 2 - Euclidean distance

.
.
.

.

.
.
.

.

KNeighborsClassifier Important Parameters Explained

metric (default = ‘minkowski’) - The distance metric used to measure
“closeness”:
- 'euclidean' - straight-line distance
- 'manhattan' - city-block distance
- 'minkowski' - general formula (p = 1 → Manhattan, p = 2 →
Euclidean)

.
.
.

.

.
.
.

.

Try a Prediction

Now that the model is trained you can see what happens in a
prediction. Here we will make up a data point (a pretend flower) and
see what the models does with this information.

X_new = pd.DataFrame([[5, 2.9, 1, 0.2]],columns=df.keys()[0:4])
prediction = knn.predict(X_new)

X_new.shape: (1, 4)

Prediction: ['setosa']

Great the model is giving at least reasonable outputs. It if had an error
our give an answer of 72, or “dog” or something we would know we
already had a problem.

.
.
.

.

.
.
.

.

Model Testing (or Validation)

Now we want to see how our model does on the exams. We are now
giving it data that it did not see during the training phase to check if it
can do a good job predicting that data. When we call

knn.predict()

we are sending 𝑋 data into our model 𝐹(𝑥) to see what it returns as
the 𝑦 value, in this case a category.

.
.
.

.

.
.
.

.

Model Testing (or Validation)

y_pred = knn.predict(X_test)

Test set predictions:
['versicolor' 'setosa' 'virginica' 'versicolor' 'versicolor' 'setosa'
'versicolor' 'virginica' 'versicolor' 'versicolor' 'virginica' 'setosa'
'setosa' 'setosa' 'setosa' 'versicolor' 'virginica' 'versicolor'
'versicolor' 'virginica' 'setosa' 'virginica' 'setosa' 'virginica'
'virginica' 'virginica' 'virginica' 'virginica' 'setosa' 'setosa']

.
.
.

.

.
.
.

.

How does this compare?

We can look at the real answer

y_test

array(['versicolor', 'setosa', 'virginica', 'versicolor', 'versicolor',
'setosa', 'versicolor', 'virginica', 'versicolor', 'versicolor',
'virginica', 'setosa', 'setosa', 'setosa', 'setosa', 'versicolor',
'virginica', 'versicolor', 'versicolor', 'virginica', 'setosa',
'virginica', 'setosa', 'virginica', 'virginica', 'virginica',
'virginica', 'virginica', 'setosa', 'setosa'], dtype=object)

.
.
.

.

.
.
.

.

Accuracy and Scoring

We usually want to actually score our model. How accurate was it on
average?

Using numpy
np.mean(y_pred == y_test)

Using the built in .score() method
knn.score(X_test, y_test)

Numy Test set score: 1.00

KNN Test set score: 1.00

