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Intermediate Data Science
Data Cleaning and Preparation

Joanna Bieri DATA201
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Important Information

• Email: joanna_bieri@redlands.edu
• Office Hours take place in Duke 209 – Office Hours Schedule
• Class Website
• Syllabus

mailto:joanna_bieri@redlands.edu
https://joannabieri.com/schedule.html
https://joannabieri.com/data201.html
https://joannabieri.com/data201/IntermediateDataScience.pdf
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Data Cleaning

Often in data science a huge portion of your time will be spent loading,
cleaning, transforming, and rearranging data. Here are the main topics
we will cover:

1 Handling Missing Data
2 Transforming Data
3 String Manipulation
4 Categorical Data
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Handling Missing Data

Missing data can happen for a wide variety of reasons:
• The data really does not exist for a certain observation: In

population data babies would not have a date of marriage or a list
of children.

• The data was improperly entered: Errors are easy to make.
• The data set was damaged: Reading or writing issues happen.
• The missing data (None, NaN, or NA) means something

important: Maybe a student did not take a test and that is
important in your analysis.
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Handling Missing Data

Pandas uses floating point NaN (Not a Number) to represent missing
data.

np.nan

this object has type float.
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Methods to handle missing data:

isna() / isnull()

Detect missing values.
df.isna()
df['column'].isnull()
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Methods to handle missing data:

notna() / notnull()

Detect non-missing values.
df.notna()
df['column'].notnull()
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Methods to handle missing data:

dropna()

Remove missing values.
df.dropna() # Drop rows with any NA values
df.dropna(axis=1) # Drop columns with any NA values
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Methods to handle missing data:

fillna()

Fill NA values with a specified value or method.
df.fillna(0) # Replace NA with 0
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Methods to handle missing data:

replace()

Replace specified values including NA.
df.replace(to_replace=np.nan, value=0)
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BEWARE OF PYTHON mutable!

When you are saving data from one list to the next you should be very
careful about how you do that! Python lists are mutable this means
that when you set one list equal to another it does not make a new
copy in memory, instead it copies a reference. Here is an example:
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BEWARE OF PYTHON mutable!

list1 = [5,4,3,2,1]
list2 = list1

print('Here is list2, it looks like a copy!')
print(list2)

print('Now we will change something in list2')
list2[0] = 10
print(list2)

print('Now look at list1')
print(list1)
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BEWARE OF PYTHON mutable!

Here is list2, it looks like a copy!
[5, 4, 3, 2, 1]
Now we will change something in list2
[10, 4, 3, 2, 1]
Now look at list1
[10, 4, 3, 2, 1]
BUT WE DIDN"T CHANGE LIST1 !!!!! WHY DID IT CHANGE????
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BEWARE OF PYTHON mutable!

Use .copy()
list2 = list1.copy() ## THIS IS OUR ONLY CHANGE

Here is list2, it looks like a copy!
[5, 4, 3, 2, 1]
Now we will change something in list2
[10, 4, 3, 2, 1]
Now look at list1
[5, 4, 3, 2, 1]
List1 did not change
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Moral of the mutable story

If you are creating a new variable by setting it equal to another list and
you want to make changes to one without changing the other you
should use .copy(). This is true of all mutable python types:

• list
• dict
• set
• pd.DataFrame
• pd.Series
• np.array
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Filtering out Missing Data
You want to be careful and intentional when filtering out missing data.
We will explore the process with a DataFrame that contains lots of
missing data.
data = pd.DataFrame([[1., 6.5, 3.], [ np.nan, np.nan, 1.],

[np.nan, np.nan, np.nan], [np.nan, 6.5, 3.]])
data

0 1 2
0 1.0 6.5 3.0
1 NaN NaN 1.0
2 NaN NaN NaN
3 NaN 6.5 3.0
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Filtering out Missing Data

data.dropna()

0 1 2
0 1.0 6.5 3.0

data.dropna(how='all')

0 1 2
0 1.0 6.5 3.0
1 NaN NaN 1.0
3 NaN 6.5 3.0
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Filtering out Missing Data

data.dropna(thresh=2)

0 1 2
0 1.0 6.5 3.0
3 NaN 6.5 3.0
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Filtering out Missing Data

Notice that each of these decisions creates a very different result! You
should also notice that some optional commands are pretty common:

• axis=0 do the calculation to the rows - usually default
• axis=1 do the calculation to the columns
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Filling in Missing Data

Most of the time you will use .fillna() but there are some nice
optional arguments that let you customize the command. Remember,
to make changes in memory you need to add inplace=True.

0 1 2
0 1.0 6.5 3.0
1 NaN NaN 1.0
2 NaN NaN NaN
3 NaN 6.5 3.0
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Filling in Missing Data

data.fillna(0)
data.fillna({0:np.nan,1:'Hello',2:0})
data.fillna(data.mean())
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Data Transformation

Next we will talk a bit more about cleaning data:

1 Removing Duplicate Data
2 Replacing Data
3 Renaming
4 Discretizing and Binning
5 Outliers
6 Sampling
7 Dummy Variables
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Duplicate Data

Sometimes data sets will have duplicate variables, maybe they are not
identical but the represent the same thing. Here column k1 has the
words and k2 has the numerical values:

k1 k2
0 one 1
1 two 1
2 one 2
3 two 3
4 one 3
5 two 4
6 two 4
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Duplicate Data

Notice that observations 5 and 6 are identical! We can check for this
using the .duplicated() and drop_duplicates() command.

data.duplicated()

0 False
1 False
2 False
3 False
4 False
5 False
6 True
dtype: bool
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Duplicate Data

data.drop_duplicates()

k1 k2
0 one 1
1 two 1
2 one 2
3 two 3
4 one 3
5 two 4



.
.
.

.

.
.
.

.

Duplicate Data

NOTE: You can also drop duplicates using just a subset of the columns:

data.drop_duplicates(subset=['k2','v2'])
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Transforming Data and Mapping

We will imagine that you have some data that tells you about the
amount of different types of fruit. Say you want to add a new column
to this data that says what kind of fruit each one is: citrus, berry,
tropical, or pome. You can use a dictionary and the .map() function to
add this information.
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Transforming Data and Mapping

food ounces
0 orange 4.0
1 blueberry -999.0
2 orange 12.0
3 banana 6.0
4 strawberry 7.5
5 orange 8.0
6 banana -999.0
7 apple 5.0
8 blackberry 6.0
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Transforming Data and Mapping

# Here is a dictionary mapping fruits to categories
food_to_category = {

"orange": "citrus",
"blueberry": "berry",
"strawberry": "berry",
"blackberry": "berry",
"banana": "tropical",
"apple": "pome"

}
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Transforming Data and Mapping
# Now we will add the column
data['category'] = data['food'].map(food_to_category)

food ounces category
0 orange 4.0 citrus
1 blueberry -999.0 berry
2 orange 12.0 citrus
3 banana 6.0 tropical
4 strawberry 7.5 berry
5 orange 8.0 citrus
6 banana -999.0 tropical
7 apple 5.0 pome
8 blackberry 6.0 berry
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Replacing Values
We have seen above how to replace NaN values, but what if there were
other types of things you wanted to replace in the dataset? The
.replace() function can replace any data you want with replacement
data.
data.replace('tropical','berry',inplace=True)

food ounces category
0 orange 4.0 citrus
1 blueberry -999.0 berry
2 orange 12.0 citrus
3 banana 6.0 berry
4 strawberry 7.5 berry
5 orange 8.0 citrus
6 banana -999.0 berry
7 apple 5.0 pome
8 blackberry 6.0 berry
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Renaming

There are lots of ways to rename things on both the column labels and
the index labels in a data frame. Here are a few examples of doing this.
Lets start with this data set:

one two three four
Ohio 0 1 2 3
Colorado 4 5 6 7
New York 8 9 10 11
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Renaming

We could rename the columns directly:

data.rename(columns = {'three':'THREE', 'four':'FOUR'}, inplace=True)

We could rename the indexes directly:

data.rename(index = {'Ohio':'California'}, inplace=True)

one two THREE FOUR
California 0 1 2 3
Colorado 4 5 6 7
New York 8 9 10 11
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Renaming

We could also define a function that updates the names and the map()
it to the index or columns.
def new_names(x):

return x[:4].upper()

data.index = data.index.map(new_names)

one two THREE FOUR
CALI 0 1 2 3
COLO 4 5 6 7
NEW 8 9 10 11
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Discretization and Binning

Sometimes you will want to take continuous data and represent it as
bins.

For example, maybe you want high, medium, and low income classes.
This is where binning will help.

Imagine you have a list of ages and you want to create age categories:
ages = [20, 22, 25, 27, 21, 23, 37, 31, 61, 45, 41, 32]
bins = [18, 25, 35, 60, 100]
age_categories = pd.cut(ages, bins)
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Discretization and Binning
age range

0 20 (18, 25]
1 22 (18, 25]
2 25 (18, 25]
3 27 (25, 35]
4 21 (18, 25]
5 23 (18, 25]
6 37 (35, 60]
7 31 (25, 35]
8 61 (60, 100]
9 45 (35, 60]
10 41 (35, 60]
11 32 (25, 35]
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Discretization and Binning
You can also get the cagegory codes - a numerical category

data['code'] = age_categories.codes

age range code
0 20 (18, 25] 0
1 22 (18, 25] 0
2 25 (18, 25] 0
3 27 (25, 35] 1
4 21 (18, 25] 0
5 23 (18, 25] 0
6 37 (35, 60] 2
7 31 (25, 35] 1
8 61 (60, 100] 3
9 45 (35, 60] 2
10 41 (35, 60] 2
11 32 (25, 35] 1



.
.
.

.

.
.
.

.

Discretization and Binning

In the range column the notation that you see is:
• ( means inclusive
• [ means exclusive

so you would read the range (18, 25] to be ages 18 but less than 25.
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Detecting Outliers

Sometimes you want to be able to detect outliers in a dataset, however
this process can take a variety of operations and is highly dependent on
how you define outliers in your data. There are two examples in the
class notes.
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Permutation and Random Sampling

Often when doing a data science project you will want to take random
samples of your data. This might be to help you avoid bias in the
ordering of your data. It might be to create model training and testing
data sets. Or maybe your data set is too big and you want to start
with a smaller subset of the data. There are lots of ways to do this:
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Permutation and Random Sampling

• NUMPY - has random.permutation() which will give you a list
of integers in a range that are permuted (rearranged) randomly.

• PANDAS - has a function .sample() that can take a sample from
a DataFrame or series.

• Other Packages - later this semester we will see other packages
like sklearn that can create test-train splits of your data.
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Permutation and Random Sampling

Here is an example data set

0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 7 8 9 10 11 12 13
2 14 15 16 17 18 19 20
3 21 22 23 24 25 26 27
4 28 29 30 31 32 33 34
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Permutation and Random Sampling
Now lets get a permutation of the rows - mix them up!
num_rows = 5
sample = np.random.permutation(num_rows)
df.take(sample)

[3 4 0 2 1]

0 1 2 3 4 5 6
3 21 22 23 24 25 26 27
4 28 29 30 31 32 33 34
0 0 1 2 3 4 5 6
2 14 15 16 17 18 19 20
1 7 8 9 10 11 12 13
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Permutation and Random Sampling
We could also permute the columns
num_cols = df.shape[1]
sample = np.random.permutation(num_cols)
df.take(sample, axis=1)

[1 2 3 6 5 4 0]

1 2 3 6 5 4 0
0 1 2 3 6 5 4 0
1 8 9 10 13 12 11 7
2 15 16 17 20 19 18 14
3 22 23 24 27 26 25 21
4 29 30 31 34 33 32 28
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Permutation and Random Sampling

Pandas has the ability to sample the data. You can choose the number
of samples 𝑛 and decide if you want to allow for rows to be sampled
again replace=True.
df.sample(n=3)
df.sample(n=30, replace=True)
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Dummy Variables

Dummy variables are variables that take the place of something in your
data set. They are especially useful for classifying categorical data. In
these cases you replace a column with categories with several columns
of 0 or 1 to represent whether or not (True/False) the observation
belongs to the category.
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Dummy Variables

Lets say we have some categorical data that we want to interact with
numerically. Below you will see the key column that contains
a,b,c. Lets generate dummy variables for this data.

key data1
0 b 0
1 b 1
2 a 2
3 c 3
4 a 4
5 b 5
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Dummy Variables

dummies = pd.get_dummies(df["key"])

a b c
0 False True False
1 False True False
2 True False False
3 False False True
4 True False False
5 False True False
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Dummy Variables

dummies = pd.get_dummies(df["key"],dtype=float)

a b c
0 0.0 1.0 0.0
1 0.0 1.0 0.0
2 1.0 0.0 0.0
3 0.0 0.0 1.0
4 1.0 0.0 0.0
5 0.0 1.0 0.0
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Dummy Variables

dummies = pd.get_dummies(df["key"],dtype=int)

a b c
0 0 1 0
1 0 1 0
2 1 0 0
3 0 0 1
4 1 0 0
5 0 1 0
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Dummy Variables

we can use the .join() function to add the dummies to our data
frame:

df_new = df.join(dummies)

key data1 a b c
0 b 0 0 1 0
1 b 1 0 1 0
2 a 2 1 0 0
3 c 3 0 0 1
4 a 4 1 0 0
5 b 5 0 1 0



.
.
.

.

.
.
.

.

Dummy Variables

Here is a slightly more complicated example.

These files contain 1,000,209 anonymous ratings of approximately
3,900 movies made by 6,040 MovieLens users who joined MovieLens in
2000. Thanks to Shyong Lam and Jon Herlocker for cleaning up and
generating the data set. See README for more information
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Dummy Variables

movie_id title genres
0 1 Toy Story (1995) Animation|Children's|Comedy
1 2 Jumanji (1995) Adventure|Children's|Fantasy
2 3 Grumpier Old Men (1995) Comedy|Romance
3 4 Waiting to Exhale (1995) Comedy|Drama
4 5 Father of the Bride Part II (1995) Comedy
5 6 Heat (1995) Action|Crime|Thriller
6 7 Sabrina (1995) Comedy|Romance
7 8 Tom and Huck (1995) Adventure|Children's
8 9 Sudden Death (1995) Action
9 10 GoldenEye (1995) Action|Adventure|Thriller
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Dummy Variables
dummies = movies['genres'].str.get_dummies("|")

Action Adventure Animation Children's Comedy Crime Documentary Drama Fantasy Film-Noir Horror Musical Mystery Romance Sci-Fi Thriller War Western
0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
2 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
3 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
3878 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
3879 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
3880 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
3881 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
3882 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
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Dummy Variables

Notice that this looks at the ‘genres’ element, breaks up the string by
the | character, and then assigns it a 1 in any category that it belongs
to. If we look at the first row, which represents Toy Story, we can see
this movie belongs to the categories: Animation, Children’s, Comedy.
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String Manipulation

One of the most common things you will have to do is interact with
data that is formatted as strings (words). This can happen because of
the way you saved your data, maybe everything got turned into strings,
or because of the way the data was originally entered.

1 Simple strings to numbers
2 Object methods
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String Manipulation

Anything that is entered into python with quotes or read in as a string
will be assumed to be a string. Even though the number below is
clearly, to our human minds, a number, Python sees it as a word.
number = '3'
int(number)
float(number)
str(3.0)
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String Manipulation

If we start with a more complicated string there are lots of things we
can do to alter it. The .split() function can split up a string how
ever you want! It turns the string into a list of substrings.

val = "a,b, guido"
val.split(",")

['a', 'b', ' guido']
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String Manipulation

We can strip off the white space that remains:

string_list = val.split(',')
new_string_list = [x.strip() for x in string_list]

['a', 'b', ' guido']
['a', 'b', 'guido']

We can join the pieces together with a common character:

'.'.join(new_string_list)

'a.b.guido'
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String Manipulation

There are so many different string methods! Here are some of my
favorites:

• .replace(old text, new text) replace text
• .rstrip() strip from the right end of the string
• .lstrip() strip from the left end of the string
• .lower() make the string all lower case
• .upper() make the string all upper case
• .title() capitalize each first letter
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String Manipulation

For more advanced string manipulation you can use regex.

import re

look in the book or online for more information.

Many of the string methods are also implemented directly in pandas
and can be applied directly to Series data.
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Categorical Data
Pandas has a build in data type called Categorical. This helps encode
certain columns or parts of your data as being categorical, rather than
just an assortment of strings. Categorical has the advantage of being
better for memory and for sorting and organizing data.

Our data will have two city columns one that is regular and one
categorical
df['city_cat'] = df['city'].astype('category')

city city_cat
0 Chicago Chicago
1 Los Angeles Los Angeles
2 Chicago Chicago
3 New York New York
4 New York New York
... ... ...
999995 Los Angeles Los Angeles
999996 New York New York
999997 New York New York
999998 New York New York
999999 Chicago Chicago
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Categorical Data

Lets look at the memory usage of each column:

print(df['city'].memory_usage(deep=True))
print(df['city_cat'].memory_usage(deep=True))

57667564
1000413
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Categorical Data
We can also assign levels to categorical data. By default if you compare
two strings with a great or less than the comparison will be
alphabetical. What what if you want reverse alphabetical or you want
to compare “high”,“medium”,“low”?
# Lets get the list of cities and
# order them reverse alphabetically
levels =
list(df['city'].value_counts().keys().sort_values(ascending=False))

# Tell pands what the levels are
df['city_cat_levels'] =
pd.Categorical(df['city'], categories=levels, ordered=True)

# Now compare
print(df['city_cat_levels'] > 'Los Angeles')
# True for 'Chicago'


