# Intermediate Data Science Data Wrangling: Join, Combine, Reshape

Joanna Bieri DATA201

### Important Information

- Email: joanna\_bieri@redlands.edu
- Office Hours take place in Duke 209 Office Hours Schedule
- Class Website
- Syllabus

## Data Wrangling

Data Wrangling is the art of managing data that might be spread across many files or databases. It also involved organizing data that comes to you in an inconvenient format. We are going to explore some ways that Pandas can help us in organizing our data!

Hierarchical indexing is a feature of pandas that allows you to have more than one index on a single axis in a DataFrame. This is like working with data in a table but allowing it to be higher dimensional. Here is the example from our book:

```
a 1 0.298598
2 0.303884
3 0.530289
b 1 0.966484
3 0.321590
c 1 0.933737
2 0.079616
d 2 0.744500
3 0.033183
```

float64

dtype:

#### data.index

```
MultiIndex([('a', 1),
             ('a', 2).
             ('a', 3).
             ('b', 1).
             ('b', 3).
             ('c', 1).
             ('c', 2).
             ('d', 2),
             ('d', 3)].
```

Notice here that the index now has two dimensions. You can reach in a grab the stuff inside the 'a' grouping and then within that choose 1,2,3. We can use partial indexing to grab different parts of the data.

We can use the .unstack() function to send this data into a one dimensional data frame. Unstack takes the inner index and sends it to to separate columns, which keeping the outer index as the DataFrame index.

|   | 1        | 2        | 3        |
|---|----------|----------|----------|
| а | 0.298598 | 0.303884 | 0.530289 |
| b | 0.966484 | NaN      | 0.321590 |
| С | 0.933737 | 0.079616 | NaN      |
| d | NaN      | 0.744500 | 0.033183 |

You can also .stack() data in a one dimensional data frame.

```
0.298598
а
        0.303884
        0.530289
b
        0.966484
   3
        0.321590
        0.933737
С
        0.079616
        0.744500
d
        0.033183
       float64
dtype:
```

In a DataFrame either the columns or the rows can have hierarchical levels.

|   |       | Ohio              | Colorado                       |
|---|-------|-------------------|--------------------------------|
|   | Green | Red               | Green                          |
| 1 | 0     | 1                 | 2                              |
| 2 | 3     | 4                 | 5                              |
| 1 | 6     | 7                 | 8                              |
| 2 | 9     | 10                | 11                             |
|   | 2     | Green 1 0 2 3 1 6 | Green Red  1 0 1  2 3 4  1 6 7 |

Figure 1: image.png

The keys are two dimensional

The indexes are two dimensional

I can choose to name the levels of index and column data

```
frame.index.names = ["key1", "key2"]
frame.columns.names = ["state", "color"]
```

|      | state |       | Ohio | Colorado |
|------|-------|-------|------|----------|
|      | color | Green | Red  | Green    |
| key1 | key2  |       |      |          |
| a    | 1     | 0     | 1    | 2        |
|      | 2     | 3     | 4    | 5        |
| Ь    | 1     | 6     | 7    | 8        |
|      | 2     | 9     | 10   | 11       |

Figure 2: image.png

#### Reordering and Sorting Levels

In the example above the levels were state then color and a/b then number. So it is easy to select by the outer level, and a bit harder to get the inside levels.

frame['Ohio']

|      | color | Green | Red |
|------|-------|-------|-----|
| key1 | key2  |       |     |
| a    | 1     | 0     | 1   |
|      | 2     | 3     | 4   |
| Ь    | 1     | 6     | 7   |
|      | 2     | 9     | 10  |

Figure 3: image.png

#### Reordering and Sorting Levels

So if we wanted to look at just the green data, we would need to reorder the levels, making color outer and state inner.

new\_frame = frame.swaplevel('state','color', axis=1)

|      | color | Green | Red  | Green    |
|------|-------|-------|------|----------|
|      | state | Ohio  | Ohio | Colorado |
| key1 | key2  |       |      |          |
| a    | 1     | 0     | 1    | 2        |
|      | 2     | 3     | 4    | 5        |
| Ь    | 1     | 6     | 7    | 8        |
|      | 2     | 9     | 10   | 11       |

Figure 4: image.png

### Summary Statistics by Level

If we run statistics on the DataFrame as a whole, it ignores the leves and does the operation to the whole thing. This might be okay in some instances, but in the data frame above maybe we want to sum the "a" and "b" groupings separately.

```
# Good old fashioned sum
frame.sum()
```

```
state color
Ohio Green 18
Red 22
Colorado Green 26
dtype: int64
```

## Summary Statistics by Level

```
# Grouped sum
frame.groupby(level='key1').sum()
```

| state |       | Ohio | Colorado |
|-------|-------|------|----------|
| color | Green | Red  | Green    |
| key1  |       |      |          |
| a     | 3     | 5    | 7        |
| b     | 15    | 17   | 19       |

Figure 5: image.png

## Summary Statistics by Level

The grouped sum lets us look at the sums of the specific index levels. We could also group by the columns! If we just transpose the data frame then the column names become the index names!

frame.T

|          | key1  |   | а |   | Ь  |
|----------|-------|---|---|---|----|
|          | key2  | 1 | 2 | 1 | 2  |
| state    | color |   |   |   |    |
| Ohio     | Green | 0 | 3 | 6 | 9  |
|          | Red   | 1 | 4 | 7 | 10 |
| Colorado | Green | 2 | 5 | 8 | 11 |

Figure 6: image.png

### Combining and Merging Datasets

Sometimes in your analysis you will want to grab data from more than one file, or maybe you scrape data from more that one website. In these cases you need to be able to merge the data into a single dataset for analysis. There are a few great Pandas commands for this:

### Combining and Merging Datasets

- pd.merge() connects the rows in separate DataFrames based on one or more keys. It implements the database join operations.
- pd.concat() this is short of concatenate. Concatenate stacks objects along an access. For example stacking rows to add more observations or stacking columns to add more variables to the existing observations.
- combine\_first() splices together overlapping data to fill in missing values in one object with values from another.

Merge connects separate DataFrames based on comparing keys (or column labels). There are different merge types available:

- inner is the most restrictive and only includes cases where the keys match across both datasets.
- left includes all entries in the left dataset and only those that match from the right dataset.
- right includes all entries in the right dataset and only those that match from the left dataset.
- outer includes all entries in both datasets.

We will start with two example DataFrames and explore the results for the different merge types.

|   | employee_id | name    | department_id |
|---|-------------|---------|---------------|
| 0 | 1           | Alice   | 10            |
| 1 | 2           | Bob     | 20            |
| 2 | 3           | Charlie | 10            |
| 3 | 4           | Diana   | 30            |
| 4 | 5           | Eve     | 99            |

|   | department_id | department_name |
|---|---------------|-----------------|
| 0 | 10            | Engineering     |
| 1 | 20            | HR              |
| 2 | 30            | Marketing       |
| 3 | 40            | Sales           |

Looking at these two data sets we see that there are 5 employees and 4 departments. The two DataFrames share the key department\_id. **You need a shared key or shared data to merge!** You will also notice some missmatch between the datasets. For example none of our employees have the department\_id 40=Sales, and one of our employees has a department\_id 99, which does not appear in our departments data frame.

Lets look at the merges below. Note: we are using employees and the left and departments as the right dataset. This could be switched. Both datasets have the department\_id key!

| _ |             |         |                  |                 |
|---|-------------|---------|------------------|-----------------|
|   | employee_id | name    | $department\_id$ | department_name |
| 0 | 1           | Alice   | 10               | Engineering     |
| 1 | 2           | Bob     | 20               | HR              |
| 2 | 3           | Charlie | 10               | Engineering     |
| 3 | 4           | Diana   | 30               | Marketing       |

|   | employee_id | name    | department_id | department_name |
|---|-------------|---------|---------------|-----------------|
| 0 | 1           | Alice   | 10            | Engineering     |
| 1 | 2           | Bob     | 20            | HR              |
| 2 | 3           | Charlie | 10            | Engineering     |
| 3 | 4           | Diana   | 30            | Marketing       |
| 4 | 5           | Eve     | 99            | NaN             |

|   | employee_id | name    | department_id | department_name |
|---|-------------|---------|---------------|-----------------|
| 0 | 1.0         | Alice   | 10            | Engineering     |
| 1 | 3.0         | Charlie | 10            | Engineering     |
| 2 | 2.0         | Bob     | 20            | HR              |
| 3 | 4.0         | Diana   | 30            | Marketing       |
| 4 | NaN         | NaN     | 40            | Sales           |

| _ |             |         |               |                 |  |
|---|-------------|---------|---------------|-----------------|--|
|   | employee_id | name    | department_id | department_name |  |
| 0 | 1.0         | Alice   | 10            | Engineering     |  |
| 1 | 3.0         | Charlie | 10            | Engineering     |  |
| 2 | 2.0         | Bob     | 20            | HR              |  |
| 3 | 4.0         | Diana   | 30            | Marketing       |  |
| 4 | NaN         | NaN     | 40            | Sales           |  |
| 5 | 5.0         | Eve     | 99            | NaN             |  |
|   |             |         |               |                 |  |

| Merge | Includes All | Includes All | N                |
|-------|--------------|--------------|------------------|
| Туре  | Employees    | Departments  | Notes            |
| Inner | Only matched | Only matched | Most restrictive |
| Left  | Yes          | Only matched | Focus on         |
|       |              |              | employees        |
| Right | Only matched | Yes          | Focus on         |
|       |              |              | departments      |
| Outer | Yes          | Yes          | Full outer view  |

How would you merge data sets if one had the correct data, but did not have the correct key? Well, one option would be to change the column labels to match, but you could also tell pandas.merge() two different keys.

You can also specify that you want to use the indexes as the merge values.

#### Hirearchical index values:

When you have hierarchical index values or columns, things get more confusing my merges are still possible!

When you need to stack new rows or columns onto an existing data set pd.concat() is a great way to do that.

Let's imagine that we are working with the employee and department information above. Now suddenly HR sends us information about two new employees and data that contains all the salaries. They have confirmed that the salaries are in increasing order of the employee id. How do we get all this data into a single dataframe?

When using concat the dimensions must match!

- axis=0 must have the same number of columns you are adding rows
- axis=1 must have the same number of rows you are adding columns

|   | employee_id | name   | department_id |
|---|-------------|--------|---------------|
| 0 | 6           | Joanna | 30            |
| 1 | 7           | Bella  | 20            |

|   | emp_num | salary |
|---|---------|--------|
| 0 | emp_1   | 60000  |
| 1 | emp_2   | 55000  |
| 2 | emp_3   | 62000  |
| 3 | emp_4   | 58000  |
| 4 | emp_5   | 500000 |
| 5 | emp_6   | 40000  |
| 6 | emp_7   | 40000  |

1 Concat the new\_hires onto the employees data

all\_employees = pd.concat([employees,
new\_hires],ignore\_index=True)

|   | employee_id | name    | department_id |
|---|-------------|---------|---------------|
| 0 | 1           | Alice   | 10            |
| 1 | 2           | Bob     | 20            |
| 2 | 3           | Charlie | 10            |
| 3 | 4           | Diana   | 30            |
| 4 | 5           | Eve     | 99            |
| 5 | 6           | Joanna  | 30            |
| 6 | 7           | Bella   | 20            |

department\_id department\_name

2 Merge the employees and department data - keeping all information

all\_employees = pd.merge(all\_employees,departments, on='department\_id',how='outer')

|   | employee_id | name    | department_id | department_name_x | departm  |
|---|-------------|---------|---------------|-------------------|----------|
| 0 | 1.0         | Alice   | 10            | Engineering       | Enginee  |
| 1 | 3.0         | Charlie | 10            | Engineering       | Engineer |
| 2 | 2.0         | Bob     | 20            | HR                | HR       |
| 3 | 7.0         | Bella   | 20            | HR                | HR       |
| 4 | 4.0         | Diana   | 30            | Marketing         | Marketii |
| 5 | 6.0         | Joanna  | 30            | Marketing         | Marketii |
| 6 | NaN         | NaN     | 40            | Sales             | Sales    |
| 7 | 5.0         | Eve     | 99            | NaN               | NaN      |
|   |             |         |               |                   |          |

#### Concatenate

3 Concat the new columns onto the full data set.

 $full_data = pd.concat([all_employees, salaries], axis=1)$ 

|   | employee_id | name    | department_id | department_name_x | departm  |
|---|-------------|---------|---------------|-------------------|----------|
| 0 | 1.0         | Alice   | 10            | Engineering       | Enginee  |
| 1 | 3.0         | Charlie | 10            | Engineering       | Enginee  |
| 2 | 2.0         | Bob     | 20            | HR                | HR       |
| 3 | 7.0         | Bella   | 20            | HR                | HR       |
| 4 | 4.0         | Diana   | 30            | Marketing         | Marketii |
| 5 | 6.0         | Joanna  | 30            | Marketing         | Marketii |
| 6 | NaN         | NaN     | 40            | Sales             | Sales    |
| 7 | 5.0         | Eve     | 99            | NaN               | NaN      |
|   |             |         |               |                   |          |

Sometimes you have two datasets that have an overlap, but one or both of them are incomplete and you want to use one to fill in NaNs in the other. You can think of the comnbine\_first() operation as patching up the data. It basically does and if-else statement that inserts values if there are null values in the original dataset.

Here is a scenario where maybe you have incomplete employee data. However each of the datasets has missing data and you want one complete dataset.

|   | name    | dept_code | omail           |
|---|---------|-----------|-----------------|
|   | паппе   | dept_code | eman            |
| 1 | Alice   | 10.0      | None            |
| 2 | None    | 20.0      | bob@example.com |
| 3 | Charlie | NaN       | None            |

|   | name       | dept_code | email               | phone    |
|---|------------|-----------|---------------------|----------|
| 1 | Alice A.   | 10        | alice@example.com   | 111-1111 |
| 2 | Bob B.     | 20        | None                | 222-2222 |
| 3 | Charlie C. | 10        | charlie@example.com | 333-3333 |
| 4 | Diana D.   | 30        | diana@example.com   | 444-4444 |

employee\_profiles.combine\_first(backup\_profiles)

|   | dept_code | email               | name     | phone    |
|---|-----------|---------------------|----------|----------|
| 1 | 10.0      | alice@example.com   | Alice    | 111-1111 |
| 2 | 20.0      | bob@example.com     | Bob B.   | 222-2222 |
| 3 | 10.0      | charlie@example.com | Charlie  | 333-3333 |
| 4 | 30.0      | diana@example.com   | Diana D. | 444-4444 |

combine\_first() does not overwrite existing data in the first DataFrame. It aligns on both index and column names — mismatches are handled gracefully. You can think of it as a data patching tool.

#### combine\_first() is perfect when:

- You have a primary source of data that may be incomplete.
- You have a secondary or backup source you want to use to fill in the blanks.
- You want row-wise alignment based on index.

But what happens if the indexes dont align?

The goal with reshaping and pivoting is to rearrange tabular data in a way that is better for your specific analysis. We have already seen some of these commands.

- stack() rotates or pivots from the columns in the data to the rows when provided hierarchical indexes.
- unstack() rotates of pivots from the rows into the columns creating hierarchical indexes.
- .pivot() reshapes the data from long(tall) format to a wide format.
- melt() reshapes the data from wide to long(tall) melting the column names into the data

#### Long (Tall) Format Also called "tidy" data in some contexts:

- One row per observation.
- Repeated categories or measurements in a single column.
- More rows, fewer columns.
- One row per person per test

#### Wide Format

- Unique values in a categorical column become column headers.
- More columns, fewer rows.
- Easier for humans to read, but not always ideal for statistical analysis.
- One row per person, one column per test

Below we will look at the ways we might rearrange or reshape our data!

|   | person | month | sales | expenses |
|---|--------|-------|-------|----------|
| 0 | Alice  | Jan   | 200   | 150      |
| 1 | Alice  | Feb   | 180   | 120      |
| 2 | Bob    | Jan   | 210   | 160      |
| 3 | Bob    | Feb   | 190   | 140      |
| _ |        |       |       |          |

When you pivot a DataFrame you tell it which columns to use for the new data set

- index which column should be used as the new row (index) labels.
- column which column should be used as the new column labels.
- values which column should be used to fill in values in the new data set.

| month  | Feb | Jan |
|--------|-----|-----|
| person |     |     |
| Alice  | 180 | 200 |
| Bob    | 190 | 210 |

| person<br>month | Alice | Bob |
|-----------------|-------|-----|
| Feb             | 120   | 140 |
| Jan             | 150   | 160 |

| month person | sales<br>Feb | Jan        | expe<br>Feb |            |
|--------------|--------------|------------|-------------|------------|
| Alice<br>Bob | 180<br>190   | 200<br>210 | 120<br>140  | 150<br>160 |

#### Stack

Stack takes the index values and shifts from wide to tall format. You will see one grouping of data for each index. In many cases you might want to set the index values to be more interesting to get a better breakdown of the data.

### Stack

We go from wide data to tall data, meaning one observation per index per column.

#### df.stack()

| 0 | person   | Alice |
|---|----------|-------|
|   | month    | Jan   |
|   | sales    | 200   |
|   | expenses | 150   |
| 1 | person   | Alice |
|   | month    | Feb   |
|   | sales    | 180   |
|   | expenses | 120   |
| 2 | person   | Bob   |
|   | month    | Jan   |
|   | sales    | 210   |
|   | expenses | 160   |

#### Stack

```
Stack with index set
df.set index(['person', 'month']).stack()
        month
person
Alice
        Jan
                sales
                             200
                             150
                expenses
        Feb
                sales
                             180
                             120
                expenses
Bob
        Jan
                sales
                             210
                             160
                expenses
        Feb
                sales
                             190
                             140
                expenses
dtype: int64
```

Lets say you are given data with observations for each person. But what you want is a wide data frame, with fewer rows and more categorical columns. This is what unstack can do!

Let's start with some stacked data - hierarchical indexes:

| person | month |          |     |
|--------|-------|----------|-----|
| Alice  | Jan   | sales    | 200 |
|        |       | expenses | 150 |
|        | Feb   | sales    | 180 |
|        |       | expenses | 120 |
| Bob    | Jan   | sales    | 210 |
|        |       | expenses | 160 |
|        | Feb   | sales    | 190 |
|        |       | expenses | 140 |
|        |       |          |     |

dtype: int64

#### data.unstack()

|        |       | sales | expenses |
|--------|-------|-------|----------|
| person | month |       |          |
| Alice  | Feb   | 180   | 120      |
|        | Jan   | 200   | 150      |
| Bob    | Feb   | 190   | 140      |
|        | Jan   | 210   | 160      |

Figure 7: image.png

Here use the Person level index as the columns unstack(level=0)

|       | person   | Alice | Bob |
|-------|----------|-------|-----|
| month |          |       |     |
| Feb   | sales    | 180   | 190 |
|       | expenses | 120   | 140 |
| Jan   | sales    | 200   | 210 |
|       | expenses | 150   | 160 |

Figure 8: image.png

Here use the month level index as the columns unstack(level=1)

|        | month    | Feb | Jan |
|--------|----------|-----|-----|
| person |          |     |     |
| Alice  | sales    | 180 | 200 |
|        | expenses | 120 | 150 |
| Bob    | sales    | 190 | 210 |
|        | expenses | 140 | 160 |

Figure 9: image.png

Here use the innermost values as the columns unstack(level=2)

|        |       | sales | expenses |
|--------|-------|-------|----------|
| person | month |       |          |
| Alice  | Feb   | 180   | 120      |
|        | Jan   | 200   | 150      |
| Bob    | Feb   | 190   | 140      |
|        | Jan   | 210   | 160      |

Figure 10: image.png

### Melt

The melt command lets you choose a column (or use all columns) to be used as an additional row in the data. Here is some data:

|   | person | month | sales | expenses |
|---|--------|-------|-------|----------|
| 0 | Alice  | Jan   | 200   | 150      |
| 1 | Alice  | Feb   | 180   | 120      |
| 2 | Bob    | Jan   | 210   | 160      |
| 3 | Bob    | Feb   | 190   | 140      |

Melt

pd.melt(df)

this is a bit drastic in this case!

|    | variable | value |
|----|----------|-------|
| 0  | person   | Alice |
| 1  | person   | Alice |
| 2  | person   | Bob   |
| 3  | person   | Bob   |
| 4  | month    | Jan   |
| 5  | month    | Feb   |
| 6  | month    | Jan   |
| 7  | month    | Feb   |
| 8  | sales    | 200   |
| 9  | sales    | 180   |
| 10 | sales    | 210   |
| 11 | 1        | 100   |

Melt

You keep the columns 'person' and 'month' the rest are melted pd.melt(df,id\_vars=['person','month'])

| 0 Alice Jan sales 200 1 Alice Feb sales 180 2 Bob Jan sales 210 3 Bob Feb sales 190 4 Alice Jan expenses 150 5 Alice Feb expenses 120 6 Bob Jan expenses 160 |   |        |       |          |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------|-------|----------|-------|
| 1 Alice Feb sales 180 2 Bob Jan sales 210 3 Bob Feb sales 190 4 Alice Jan expenses 150 5 Alice Feb expenses 120 6 Bob Jan expenses 160                       |   | person | month | variable | value |
| 2 Bob Jan sales 210 3 Bob Feb sales 190 4 Alice Jan expenses 150 5 Alice Feb expenses 120 6 Bob Jan expenses 160                                             | 0 | Alice  | Jan   | sales    | 200   |
| 3 Bob Feb sales 190 4 Alice Jan expenses 150 5 Alice Feb expenses 120 6 Bob Jan expenses 160                                                                 | 1 | Alice  | Feb   | sales    | 180   |
| 4 Alice Jan expenses 150 5 Alice Feb expenses 120 6 Bob Jan expenses 160                                                                                     | 2 | Bob    | Jan   | sales    | 210   |
| 5 Alice Feb expenses 120<br>6 Bob Jan expenses 160                                                                                                           | 3 | Bob    | Feb   | sales    | 190   |
| 6 Bob Jan expenses 160                                                                                                                                       | 4 | Alice  | Jan   | expenses | 150   |
|                                                                                                                                                              | 5 | Alice  | Feb   | expenses | 120   |
| 7 Bob Feb expenses 140                                                                                                                                       | 6 | Bob    | Jan   | expenses | 160   |
|                                                                                                                                                              | 7 | Bob    | Feb   | expenses | 140   |