
.
.
.

.

.
.
.

.

Intermediate Data Science
Data Wrangling: Join, Combine, Reshape

Joanna Bieri DATA201

.
.
.

.

.
.
.

.

Important Information

• Email: joanna_bieri@redlands.edu
• Office Hours take place in Duke 209 – Office Hours Schedule
• Class Website
• Syllabus

mailto:joanna_bieri@redlands.edu
https://joannabieri.com/schedule.html
https://joannabieri.com/data201.html
https://joannabieri.com/data201/IntermediateDataScience.pdf

.
.
.

.

.
.
.

.

Data Wrangling

Data Wrangling is the art of managing data that might be spread
across many files or databases. It also involved organizing data that
comes to you in an inconvenient format. We are going to explore some
ways that Pandas can help us in organizing our data!

.
.
.

.

.
.
.

.

Hierarchical Indexing
Hierarchical indexing is a feature of pandas that allows you to have
more than one index on a single axis in a DataFrame. This is like
working with data in a table but allowing it to be higher dimensional.
Here is the example from our book:

a 1 0.298598
2 0.303884
3 0.530289

b 1 0.966484
3 0.321590

c 1 0.933737
2 0.079616

d 2 0.744500
3 0.033183

dtype: float64

.
.
.

.

.
.
.

.

Hierarchical Indexing
data.index

MultiIndex([('a', 1),
('a', 2),
('a', 3),
('b', 1),
('b', 3),
('c', 1),
('c', 2),
('d', 2),
('d', 3)],

)

Notice here that the index now has two dimensions. You can reach in a
grab the stuff inside the ‘a’ grouping and then within that choose 1,2,3.
We can use partial indexing to grab different parts of the data.

.
.
.

.

.
.
.

.

Hierarchical Indexing

We can use the .unstack() function to send this data into a one
dimensional data frame. Unstack takes the inner index and sends it to
to separate columns, which keeping the outer index as the DataFrame
index.

1 2 3
a 0.298598 0.303884 0.530289
b 0.966484 NaN 0.321590
c 0.933737 0.079616 NaN
d NaN 0.744500 0.033183

.
.
.

.

.
.
.

.

Hierarchical Indexing

You can also .stack() data in a one dimensional data frame.

a 1 0.298598
2 0.303884
3 0.530289

b 1 0.966484
3 0.321590

c 1 0.933737
2 0.079616

d 2 0.744500
3 0.033183

dtype: float64

.
.
.

.

.
.
.

.

Hierarchical Indexing

In a DataFrame either the columns or the rows can have hierarchical
levels.

Figure 1: image.png

.
.
.

.

.
.
.

.

Hierarchical Indexing

The keys are two dimensional

MultiIndex([('Ohio', 'Green'),
('Ohio', 'Red'),
('Colorado', 'Green')],

)

.
.
.

.

.
.
.

.

Hierarchical Indexing

The indexes are two dimensional

MultiIndex([('a', 1),
('a', 2),
('b', 1),
('b', 2)],

)

.
.
.

.

.
.
.

.

Hierarchical Indexing
I can choose to name the levels of index and column data

frame.index.names = ["key1", "key2"]
frame.columns.names = ["state", "color"]

Figure 2: image.png

.
.
.

.

.
.
.

.

Reordering and Sorting Levels
In the example above the levels were state then color and a/b then
number. So it is easy to select by the outer level, and a bit harder to
get the inside levels.

frame['Ohio']

Figure 3: image.png

frame['Green"

would give an error!

.
.
.

.

.
.
.

.

Reordering and Sorting Levels
So if we wanted to look at just the green data, we would need to
reorder the levels, making color outer and state inner.

new_frame = frame.swaplevel('state','color', axis=1)

Figure 4: image.png

.
.
.

.

.
.
.

.

Summary Statistics by Level

If we run statistics on the DataFrame as a whole, it ignores the leves
and does the operation to the whole thing. This might be okay in some
instances, but in the data frame above maybe we want to sum the “a”
and “b” groupings separately.

Good old fashioned sum
frame.sum()

state color
Ohio Green 18

Red 22
Colorado Green 26
dtype: int64

.
.
.

.

.
.
.

.

Summary Statistics by Level

Grouped sum
frame.groupby(level='key1').sum()

Figure 5: image.png

.
.
.

.

.
.
.

.

Summary Statistics by Level
The grouped sum lets us look at the sums of the specific index levels.
We could also group by the columns! If we just transpose the data
frame then the column names become the index names!

frame.T

Figure 6: image.png

.
.
.

.

.
.
.

.

Combining and Merging Datasets

Sometimes in your analysis you will want to grab data from more than
one file, or maybe you scrape data from more that one website. In
these cases you need to be able to merge the data into a single dataset
for analysis. There are a few great Pandas commands for this:

.
.
.

.

.
.
.

.

Combining and Merging Datasets

• pd.merge() - connects the rows in separate DataFrames based on
one or more keys. It implements the database join operations.

• pd.concat() - this is short of concatenate. Concatenate stacks
objects along an access. For example stacking rows to add more
observations or stacking columns to add more variables to the
existing observations.

• combine_first() - splices together overlapping data to fill in
missing values in one object with values from another.

.
.
.

.

.
.
.

.

Pandas Merge

Merge connects separate DataFrames based on comparing keys (or
column labels). There are different merge types available:

• inner is the most restrictive and only includes cases where the
keys match across both datasets.

• left includes all entries in the left dataset and only those that
match from the right dataset.

• right includes all entries in the right dataset and only those that
match from the left dataset.

• outer includes all entries in both datasets.

.
.
.

.

.
.
.

.

Pandas Merge

We will start with two example DataFrames and explore the results for
the different merge types.

.
.
.

.

.
.
.

.

Pandas Merge
employee_id name department_id

0 1 Alice 10
1 2 Bob 20
2 3 Charlie 10
3 4 Diana 30
4 5 Eve 99

department_id department_name
0 10 Engineering
1 20 HR
2 30 Marketing
3 40 Sales

.
.
.

.

.
.
.

.

Pandas Merge

Looking at these two data sets we see that there are 5 employees and 4
departments. The two DataFrames share the key department_id. You
need a shared key or shared data to merge! You will also notice
some missmatch between the datasets. For example none of our
employees have the department_id 40=Sales, and one of our employees
has a department_id 99, which does not appear in our departments
data frame.

.
.
.

.

.
.
.

.

Pandas Merge

Lets look at the merges below. Note: we are using employees and the
left and departments as the right dataset. This could be switched.
Both datasets have the department_id key!

.
.
.

.

.
.
.

.

Pandas Merge

pd.merge(employees, departments,
on='department_id', how='inner')

employee_id name department_id department_name
0 1 Alice 10 Engineering
1 2 Bob 20 HR
2 3 Charlie 10 Engineering
3 4 Diana 30 Marketing

.
.
.

.

.
.
.

.

Pandas Merge

pd.merge(employees, departments,
on='department_id', how='left')

employee_id name department_id department_name
0 1 Alice 10 Engineering
1 2 Bob 20 HR
2 3 Charlie 10 Engineering
3 4 Diana 30 Marketing
4 5 Eve 99 NaN

.
.
.

.

.
.
.

.

Pandas Merge

pd.merge(employees, departments,
on='department_id', how='right')

employee_id name department_id department_name
0 1.0 Alice 10 Engineering
1 3.0 Charlie 10 Engineering
2 2.0 Bob 20 HR
3 4.0 Diana 30 Marketing
4 NaN NaN 40 Sales

.
.
.

.

.
.
.

.

Pandas Merge

pd.merge(employees, departments,
on='department_id', how='outer')

employee_id name department_id department_name
0 1.0 Alice 10 Engineering
1 3.0 Charlie 10 Engineering
2 2.0 Bob 20 HR
3 4.0 Diana 30 Marketing
4 NaN NaN 40 Sales
5 5.0 Eve 99 NaN

.
.
.

.

.
.
.

.

Pandas Merge

Merge
Type

Includes All
Employees

Includes All
Departments Notes

Inner � Only matched � Only matched Most restrictive
Left � Yes � Only matched Focus on

employees
Right � Only matched � Yes Focus on

departments
Outer � Yes � Yes Full outer view

.
.
.

.

.
.
.

.

Pandas Merge

How would you merge data sets if one had the correct data, but did
not have the correct key? Well, one option would be to change the
column labels to match, but you could also tell pandas.merge() two
different keys.

pd.merge(employees, departments,
left_on='department_id', right_on='dept_code')

.
.
.

.

.
.
.

.

Pandas Merge

You can also specify that you want to use the indexes as the merge
values.

pd.merge(employees,departments,
left_on='department_id', right_index=True)

Hirearchical index values:
When you have hierarchical index values or columns, things get more
confusing my merges are still possible!

.
.
.

.

.
.
.

.

Concatenate

When you need to stack new rows or columns onto an existing data set
pd.concat() is a great way to do that.

.
.
.

.

.
.
.

.

Concatenate

Let’s imagine that we are working with the employee and department
information above. Now suddenly HR sends us information about two
new employees and data that contains all the salaries. They have
confirmed that the salaries are in increasing order of the employee id.
How do we get all this data into a single dataframe?

.
.
.

.

.
.
.

.

Concatenate

When using concat the dimensions must match!
• axis=0 must have the same number of columns - you are adding

rows
• axis=1 must have the same number of rows - you are adding

columns

.
.
.

.

.
.
.

.

Concatenate
employee_id name department_id

0 6 Joanna 30
1 7 Bella 20

emp_num salary
0 emp_1 60000
1 emp_2 55000
2 emp_3 62000
3 emp_4 58000
4 emp_5 500000
5 emp_6 40000
6 emp_7 40000

.
.
.

.

.
.
.

.

Concatenate
1 Concat the new_hires onto the employees data

all_employees = pd.concat([employees,
new_hires],ignore_index=True)

employee_id name department_id
0 1 Alice 10
1 2 Bob 20
2 3 Charlie 10
3 4 Diana 30
4 5 Eve 99
5 6 Joanna 30
6 7 Bella 20

department_id department_name
0 10 Engineering
1 20 HR
2 30 Marketing
3 40 Sales

.
.
.

.

.
.
.

.

Concatenate
2 Merge the employees and department data - keeping all

information

all_employees = pd.merge(all_employees,departments,
on=‘department_id’,how=‘outer’)

employee_id name department_id department_name_x department_name_y
0 1.0 Alice 10 Engineering Engineering
1 3.0 Charlie 10 Engineering Engineering
2 2.0 Bob 20 HR HR
3 7.0 Bella 20 HR HR
4 4.0 Diana 30 Marketing Marketing
5 6.0 Joanna 30 Marketing Marketing
6 NaN NaN 40 Sales Sales
7 5.0 Eve 99 NaN NaN

.
.
.

.

.
.
.

.

Concatenate
3 Concat the new columns onto the full data set.

full_data = pd.concat([all_employees, salaries], axis=1)

employee_id name department_id department_name_x department_name_y emp_num salary
0 1.0 Alice 10 Engineering Engineering emp_1 60000.0
1 3.0 Charlie 10 Engineering Engineering emp_2 55000.0
2 2.0 Bob 20 HR HR emp_3 62000.0
3 7.0 Bella 20 HR HR emp_4 58000.0
4 4.0 Diana 30 Marketing Marketing emp_5 500000.0
5 6.0 Joanna 30 Marketing Marketing emp_6 40000.0
6 NaN NaN 40 Sales Sales emp_7 40000.0
7 5.0 Eve 99 NaN NaN NaN NaN

.
.
.

.

.
.
.

.

Combining Data with Overlap

Sometimes you have two datasets that have an overlap, but one or
both of them are incomplete and you want to use one to fill in NaNs in
the other. You can think of the comnbine_first() operation as
patching up the data. It basically does and if-else statement that
inserts values if there are null values in the original dataset.

.
.
.

.

.
.
.

.

Combining Data with Overlap

Here is a scenario where maybe you have incomplete employee data.
However each of the datasets has missing data and you want one
complete dataset.

.
.
.

.

.
.
.

.

Combining Data with Overlap

name dept_code email
1 Alice 10.0 None
2 None 20.0 bob@example.com
3 Charlie NaN None

name dept_code email phone
1 Alice A. 10 alice@example.com 111-1111
2 Bob B. 20 None 222-2222
3 Charlie C. 10 charlie@example.com 333-3333
4 Diana D. 30 diana@example.com 444-4444

.
.
.

.

.
.
.

.

Combining Data with Overlap

employee_profiles.combine_first(backup_profiles)

dept_code email name phone
1 10.0 alice@example.com Alice 111-1111
2 20.0 bob@example.com Bob B. 222-2222
3 10.0 charlie@example.com Charlie 333-3333
4 30.0 diana@example.com Diana D. 444-4444

.
.
.

.

.
.
.

.

Combining Data with Overlap

combine_first() does not overwrite existing data in the first DataFrame.
It aligns on both index and column names — mismatches are handled
gracefully. You can think of it as a data patching tool.

.
.
.

.

.
.
.

.

Combining Data with Overlap

combine_first() is perfect when:
• You have a primary source of data that may be incomplete.
• You have a secondary or backup source you want to use to fill in

the blanks.
• You want row-wise alignment based on index.

But what happens if the indexes dont align?

.
.
.

.

.
.
.

.

Reshaping and Pivoting

The goal with reshaping and pivoting is to rearrange tabular data in a
way that is better for your specific analysis. We have already seen some
of these commands.

• stack() rotates or pivots from the columns in the data to the
rows when provided hierarchical indexes.

• unstack() rotates of pivots from the rows into the columns
creating hierarchical indexes.

• .pivot() reshapes the data from long(tall) format to a wide
format.

• melt() reshapes the data from wide to long(tall) melting the
column names into the data

.
.
.

.

.
.
.

.

Reshaping and Pivoting

Long (Tall) Format Also called “tidy” data in some contexts:
• One row per observation.
• Repeated categories or measurements in a single column.
• More rows, fewer columns.
• One row per person per test

.
.
.

.

.
.
.

.

Reshaping and Pivoting

Wide Format
• Unique values in a categorical column become column headers.
• More columns, fewer rows.
• Easier for humans to read, but not always ideal for statistical

analysis.
• One row per person, one column per test

.
.
.

.

.
.
.

.

Reshaping and Pivoting

Below we will look at the ways we might rearrange or reshape our data!

person month sales expenses
0 Alice Jan 200 150
1 Alice Feb 180 120
2 Bob Jan 210 160
3 Bob Feb 190 140

.
.
.

.

.
.
.

.

Pivot

When you pivot a DataFrame you tell it which columns to use for the
new data set

• index which column should be used as the new row (index) labels.
• column which column should be used as the new column labels.
• values which column should be used to fill in values in the new

data set.

.
.
.

.

.
.
.

.

Pivot

df.pivot(index='person',
columns='month', values='sales')

month Feb Jan
person
Alice 180 200
Bob 190 210

.
.
.

.

.
.
.

.

Pivot

df.pivot(index='month',
columns='person', values='expenses')

person Alice Bob
month
Feb 120 140
Jan 150 160

.
.
.

.

.
.
.

.

Pivot

df.pivot(index='person',
columns='month', values=['sales','expenses'])

sales expenses
month Feb Jan Feb Jan
person
Alice 180 200 120 150
Bob 190 210 140 160

.
.
.

.

.
.
.

.

Stack

Stack takes the index values and shifts from wide to tall format. You
will see one grouping of data for each index. In many cases you might
want to set the index values to be more interesting to get a better
breakdown of the data.

.
.
.

.

.
.
.

.

Stack
We go from wide data to tall data, meaning one observation per index
per column.

df.stack()

0 person Alice
month Jan
sales 200
expenses 150

1 person Alice
month Feb
sales 180
expenses 120

2 person Bob
month Jan
sales 210
expenses 160

3 person Bob
month Feb
sales 190
expenses 140

dtype: object

.
.
.

.

.
.
.

.

Stack

Stack with index_set

df.set_index(['person', 'month']).stack()

person month
Alice Jan sales 200

expenses 150
Feb sales 180

expenses 120
Bob Jan sales 210

expenses 160
Feb sales 190

expenses 140
dtype: int64

.
.
.

.

.
.
.

.

Unstack

Lets say you are given data with observations for each person. But
what you want is a wide data frame, with fewer rows and more
categorical columns. This is what unstack can do!

.
.
.

.

.
.
.

.

Unstack

Let’s start with some stacked data - hierarchical indexes:

person month
Alice Jan sales 200

expenses 150
Feb sales 180

expenses 120
Bob Jan sales 210

expenses 160
Feb sales 190

expenses 140
dtype: int64

.
.
.

.

.
.
.

.

Unstack

data.unstack()

Figure 7: image.png

.
.
.

.

.
.
.

.

Unstack
Here use the Person level index as the columns

unstack(level=0)

Figure 8: image.png

.
.
.

.

.
.
.

.

Unstack
Here use the month level index as the columns

unstack(level=1)

Figure 9: image.png

.
.
.

.

.
.
.

.

Unstack

Here use the innermost values as the columns

unstack(level=2)

Figure 10: image.png

.
.
.

.

.
.
.

.

Melt

The melt command lets you choose a column (or use all columns) to
be used as an additional row in the data. Here is some data:

person month sales expenses
0 Alice Jan 200 150
1 Alice Feb 180 120
2 Bob Jan 210 160
3 Bob Feb 190 140

.
.
.

.

.
.
.

.

Melt
pd.melt(df)

this is a bit drastic in this case!

variable value
0 person Alice
1 person Alice
2 person Bob
3 person Bob
4 month Jan
5 month Feb
6 month Jan
7 month Feb
8 sales 200
9 sales 180
10 sales 210
11 sales 190
12 expenses 150
13 expenses 120
14 expenses 160
15 expenses 140

.
.
.

.

.
.
.

.

Melt
You keep the columns ‘person’ and ‘month’ the rest are melted

pd.melt(df,id_vars=['person','month'])

person month variable value
0 Alice Jan sales 200
1 Alice Feb sales 180
2 Bob Jan sales 210
3 Bob Feb sales 190
4 Alice Jan expenses 150
5 Alice Feb expenses 120
6 Bob Jan expenses 160
7 Bob Feb expenses 140

