Intermediate Data Science
Data Aggregation and Group Operations

Joanna Bieri DATA201

Intermediate Data Science

Important Information

Email: joanna_bieri@redlands.edu

Office Hours take place in Duke 209 — Office Hours Schedule
Class Website

Syllabus

mailto:joanna_bieri@redlands.edu
https://joannabieri.com/schedule.html
https://joannabieri.com/data201.html
https://joannabieri.com/data201/IntermediateDataScience.pdf

Data Aggregation and Groups

Applying functions to separate groups of your data can be a critical
component of data analysis. Often we have questions about how
subgroups of the data differ or we might want to compute pivot tables
for reporting or visualization. We are going to get more in depth into
the groupby () function and really see if we can understand what it is
doing and what object is returned from it. We will also see how to
compute pivot tables and cross-tabulations.

Grouping

When grouping we use split-apply-combine to describe group
operations.

® SPLIT - we first split the data based on one or more keys. Think
about categorical values in a single column.

® APPLY - now we apply a function to each of the data subsets that
we split above.

® COMBINE - finally the results of these functions are combined
into a single summary output or result object.

Here is some example data

Grouping

keyl key?2 datal data2
0 a 1 1.270613 -0.393596
1 a 2 0.050822 2.970859
2 None 1 1.006155 -0.681311
3 b 2 0.394552 -0.298086
4 b 1 1.959824 0.037971
5 a <NA> -1.810534 0.169288
6 None 1 2.196369 -0.734510

Grouping

What if you wanted to calculate the mean of the column datal, but on
subsets or groups based on keyl.

First group the data

grouped = df["datal"].groupby(df["keyl1"])
What is this object

grouped

<pandas.core.groupby.generic.SeriesGroupBy object at 0x7b8a9e3

Grouping

Notice that we can't see our data here. This has created a python
object that contains all the information we need to apply a function,
but it has not actually computed anything yet. We have prepared our
split.

Now we will apply a function!
grouped.sum()

keyl

a -0.489098

b 2.354376

Name: datal, dtype: float64

We have now applied a function and combined the results into a series.

More Examples

Calculate the mean of the data in column datal

Group by two keys

Results in hierarchical index

df ["datal"].groupby([df ["key1"], df["key2"]1]).mean()

keyl key2

a 1 1.270613
2 0.050822

b 1 1.959824
2 0.394552

Name: datal, dtype: float64

More Examples

Calculate the means of both column datal and data2
Group by both keyl and key2
df . groupby ([df ["key1"], df["key2"1]).mean()

More Examples

This will automatically drop NalNs
df .groupby('keyl') .size()

keyl
a 3
b 2

dtype: int64

df . groupby ('keyl',dropna=False) .size()

keyl

a 3
b 2
NaN 2

dtype: int64

More Examples

Count the number of nonnull values
df .groupby ('keyl') .count ()

key?2 datal data2
keyl

a 2 3 3
b 2 2 2

Iterating over Groups

You can iterate over the group object returned from groupby().
grouped = df["datal"].groupby(df["key1"])
for g in grouped:

print(g[0])
display(gl[1])

Iterating over Groups

0 1.270613
1 0.050822
5 -1.810534
Name: datal, dtype: float64

3 0.394552
4 1.959824
Name: datal, dtype: float64

Iterating over Groups

You can see that each thing in our grouped object is a tuple. The first
entry in the tuple is the group name (or category) the second object is
a Series or a DataFrame depending on the number of columns sent in.

grouped = df[["datal","data2"]].groupby(df ["keyl1"])

datal data?2

0 1.270613 -0.393596
0.050822 2.970859
5 -1.810534 0.169288

[ay

datal data2

3 0.394552 -0.298086
4 1.959824 0.037971

Column vs Row Grouping

By default groups are created on the axis=‘index’ meaning that it is
breaking up the rows into groups based on labels in a column. But we
could break up columns based on values in a row.

Column vs Row Grouping

Here is an example where we group the data based on column names.

1 We take the transpose of the dataframe.

Column vs Row Grouping

0 1 2 3 4 5
keyl a a None b b a
key2 1 2 1 2 1 <NA>

datal 1.270613 0.050822 1.006155 0.394552 1.959824 -1.81053
data2 -0.393596 2.970859 -0.681311 -0.298086 0.037971 0.16928¢&

Column vs Row Grouping

2 Here we send in a dictionary that maps the values found in the
index to either key or data.

3 The groupby now splits based on our old column names.
mapping = {"keyl": "key", "key2": "key",
"datal": "data", "data2": "data"}

grouped = df.T.groupby(mapping)

Column vs Row Grouping

0 1 2 3 4 5

datal 1.270613 0.050822 1.006155 0.394552 1.959824 -1.81053
data2 -0.393596 2.970859 -0.681311 -0.298086 0.037971 0.16928¢&

0 1 2 3 4 5 6

keyl a a None b b a None
key2 1 2 1 2 1 <NA> 1

Grouping with Functions

You can also use python functions to specify groups.

For example, in the data below we have information about different

people. What if you wanted to group a data set based on the length of
their name. You can do that!

Grouping with Functions

Example data:

a b c d e
Joe 0.999187 0.047659 1.462147 1.305697 0.412685
Steve 1.006778 0.939083 -0.091624 -0.549589 -0.475812
Wanda 0.486682 NaN NaN -0.671000 1.025035
Jill 0.440406 0.820044 0.367237 0.440910 0.972593
Trey 0.219433 1.888156 1.463126 -1.385857 1.880668

Grouping with Functions
grouped = people.groupby(len)

a b C d e
Joe 0.999187 0.047659 1.462147 1.305697 0.412685
a b C d e
Jill 0.440406 0.820044 0.367237 0.440910 0.972593
Trey 0.219433 1.888156 1.463126 -1.385857 1.880668
a b C d e
Steve 1.006778 0.939083 -0.091624 -0.549589 -0.475812
Wanda 0.486682 NaN NaN -0.671000 1.025035

Data Aggregation

Data aggregation is when you take an array (or list) of values and apply
a transformation that produces a single scalar output. Think about a
list of grades and then taking an average.

The lecture notes have a long list of functions!

Now sometimes you want to apply multiple functions to a single
grouped object. One way to do this is with the .agg() function.

Data Aggregation

Lets read in the tips data we have seen before:

total_bill tip smoker day time size tip_pct
0 16.99 1.01 No Sun Dinner 2 0.059447
1 10.34 1.66 No Sun Dinner 3 0.160542
2 21.01 3.50 No Sun Dinner 3 0.166587
3 23.68 3.31 No Sun Dinner 2 0.139780
4 2459 3.61 No Sun Dinner 4 0.146808

Data Aggregation

Now lets say that we want to understand the tip percentage from
different groups: smokers vs nonsmokers, vs day of the week. Maybe
you want to know the average and standard deviation of the tip
percentage and you want to define a calculation of your own called
max_to_min that calculates the difference between the max and min
percent.

Now we can define our own custom function
def max_to_min(arr):
return arr.max() - arr.min()

Data Aggregation

Now group the data by day and smoker and use .agg to apply the
functions:

grouped = tips.groupby(["day", "smoker"])

functions = ["mean", "std", max_to_min]
agg_data = grouped['tip_pct'].agg(functions)

Data Aggregation

This is a case where | would use pandas .plot()

agg_data.plot.bar()
plt.grid()
plt.show()

This is a case where | would use pandas .plot()

== -
— (S3A "anyL)

. .
lu (ON “Iny1)

- “ (s34 ‘uns)

II“ (ON ‘uns)
IIl“ (Sak "1es)
lllu (ON "JeS)
"“ (SaA “Ld)

lh (ON ")

B max to min

EEE mean
mm std

6 -
0.5
0.4 1
0.3

T T 1
N e
L= (=] o

0.

Groupwise Linear Regression

We talked about linear regression in DATA101 and DATA1Q0. It is a
way to fit a straight line to some given data.

We will use sklearn to do this. If you don't have it installed, you should
install it.

Groupwise Linear Regression

We will read in some data

AAPL MSFT XOM SPX
2003-01-02 7.40 21.11 29.22 909.03
2003-01-03 7.45 21.14 29.24 908.59
2003-01-06 7.45 21.52 29.96 929.01
2003-01-07 7.43 21.93 28.95 922.93
2003-01-08 7.28 21.31 28.83 909.93

Groupwise Linear Regression

We want to group the data by year, but notice that the index values of
this data are Timestamps!

print(first_index.year)

print (first_index.month)

print (first_index.month_name())
print (first_index.day)
print(first_index.day_name())

2003

1
January
2
Thursday

Groupwise Linear Regression

We can define a function to get the year
def get_year(x):

return x.year

Then group by the year
by_year = close_px.groupby(get_year)

Groupwise Linear Regression

Now do the linear regression:

from sklearn.linear_model import LinearRegression
Define a liner regression and return intercept and slope
def regress(data,xvars,yvar):

X = datal[xvars]

y = datalyvarl

LM = LinearRegression()

LM.fit (X, y)

slope = LM.coef_[0]

intercept = LM.intercept_

return intercept, slope

Groupwise Linear Regression

Apply the linear regression to the groups
by_year.apply(regress,yvar="'AAPL' ,xvars=['SPX'])

Groupwise Linear Regression

2003 (-8.58984966958583, 0.018505966710274123)
2004 (-132.12116289682774, 0.1325654494610963)
2005 (-299.5951029082234, 0.28683118762773924)
2006 (-133.18691255199056, 0.15566846429728873)
2007 (-432.9175504440354, 0.37990617598041215)
2008 (-36.33814322777991, 0.1461565642803874)
2009 (-164.38487241406185, 0.3282529241664158)
2010 (-210.84981430613925, 0.41290045011855553)
2011 (603.8769113704016, -0.1938338932016932)

dtype: object

Pivot Tables and Cross-Tabulation

Pivot Table

Pivot tables are often found in spreadsheet programs and are a way to
summarize data. We have seen the .pivot operation as a way to
wrangle the data. Here we will look at the pivot_table() method.
The results in many cases can be produced using the groupby function,
but this acts as a shortcut and can add partial totals or margins to the
data.

Remember the tips data:

Pivot Table

total_bill tip smoker day time size tip_pct
0 16.99 1.01 No Sun Dinner 2 0.059447
1 10.34 1.66 No Sun Dinner 3 0.160542
2 21.01 3.50 No Sun Dinner 3 0.166587
3 23.68 3.31 No Sun Dinner 2 0.139780
4 2459 3.61 No Sun Dinner 4 0.146808

Pivot Table

This will create a DataFrame with index values taken from the day and
smoker rows and the data columns from the values.

tips.pivot_table(index=["day", "smoker"],
values=["size", "tip", "tip_pct", "total_bill"])

Pivot Table

size tip tip_pct total bill

day smoker
Fri Ne 2250000 2812500 0151650 18.420000
Yes 2066667 2.714000 0174783 16.813333
Sat Ne 2555556 3.102889 0158048 19661778
Yes 2476190 2875476 0147906 21.276667
Sun Ne 2929825 3.1678%% 0.160113 20506667
Yes 2578947 3516842 087250 24.120000
Thur Ne 24B8BBE9 2673778 0.602%8 17113111

Pivot Table

NOTE by default the pivot table returns the mean()

We could have done the same operation with groupby!

Pivot Table

Arguments you might want to pass into the pivot_table() function:

® index — the values that you are grouping by

® values — the numbers you are aggregating

® columns — categories to subset the columns - adding extra
columns to the output

® margin=True — include the margin or the value for the whole

® aggfunc — aggregation function if you want something other than
mean.

® fill_value — what you want to full if the computation runs into a
NaN

More examples in the lecture notes!

Crosstab

Cross tabulation is a type of pivot table that returns frequency
observations. You can very quickly reach into your data and get counts
of the number of observations that fall into each subset.

Crosstab

Here we will cross tabulate the counts for day of the week, time, and
smoker yes/no. This will let us see how the counts line up.

cdata = pd.crosstab([tips["time"], tips["day"]], tips["smoker"

Crosstab

smoker Mo Yes

time day
Dinner Fri 3
Sak 45
Sun 57
Thur 1
Lunch Fri 1
Thur 44

Figure 2: Crosstab

42
19

17

Crosstab

Use pandas to do a quick plot!

cdata.plot.bar()

plt.grid()
plt.ylabel('Customer Count')
plt.show()

Crosstab

T
smoker

m Yes

50 4 HEE No

(=] (=] =]
= " [

JUNoD JaWoisnd

0_

(4nyL “youn1)

(14 "youn)

{4ny1 ‘1auuig

{uns ‘1auuIq)

(1es "Jauuiq)

(14 “12uUI0)

