
.
.
.

.

.
.
.

.

Intermediate Data Science
Time Series Data

Joanna Bieri DATA201

.
.
.

.

.
.
.

.

Time Series Data

Time series are a form of data that are common in many fields:
Economics, Finance, Ecology, Neuroscience, Physics, and Applied Math.
Any data that is recorded at many points over time, with a certain
frequency of observations, is time series data. Time plays an important
role in the data - maybe you want to know how observations change
over time.

.
.
.

.

.
.
.

.

Time Series Data

• Fixed Frequency observations are recorded at a fixed interval. The
intervals are regular and time steps consistent.

• Irregular observations do not have a fixed interval, although time
is recorded and could be important to your analysis.

.
.
.

.

.
.
.

.

Time Series Data

There are many ways that you might mark time series data:
• Timestamps time marked by recording specific instants in time.
• Fixed Periods time marked by recording the month or the year.
• Intervals of Time mark both a start and end timestamp.
• Experimental or Elapsed Time time as recorded relative to a

start time.

We will mostly explore timestamps, since the other types can usually be
converted into timestamps.

.
.
.

.

.
.
.

.

Date and Time Tools

We will start by exploring tools that are available for interacting with
dates and times. We will look at the datetime package.

from datetime import datetime
now = datetime.now()
print(now)

2025-09-30 15:46:23.953545

We see the format is year, month, day, hour, minute, second,
microsecond. We can access items from this datetime object. Try now.
and press the tab button!

.
.
.

.

.
.
.

.

Date and Time Tools

You can add or subtract a timedelta to shift a datetime object or
create a series of datetimes.

from datetime import timedelta
timedelta(days=0, seconds=0,

microseconds=0, milliseconds=0,
minutes=0, hours=0, weeks=0)

You can quickly generate lists of time data
delta = timedelta(days=1)
days_of_year = [datetime(2025,1,1)]

for i in range(30):
days_of_year.append(days_of_year[-1]+delta)

.
.
.

.

.
.
.

.

Converting Strings

You can go back and forth between datetime objects and strings.

Convert to string
dt = datetime(2000,1,1)
General String
str(dt)
Formated String
dt.strftime("%m-%d-%Y")

Convert to datetime
str_date = '1-1-2000'
datetime.strptime(str_date, "%m-%d-%Y")

.
.
.

.

.
.
.

.

Time Series Basics - Weather data

Warning: Looks like you're using an outdated `kagglehub` version (installed: 0.3.8), please consider upgrading to the latest version (0.3.13).
Path to dataset files: /home/bellajagu/.cache/kagglehub/datasets/parthdande/timeseries-weather-dataset/versions/2
['Weather_dataset.csv', 'Weather_Data_1980_2024(hourly).csv']

time temperature relative_humidity dew_point precipitation (mm) rain (mm) snowfall (cm) pressure_msl (hPa) surface_pressure (hPa) cloud_cover (%) cloud_cover_low (%) cloud_cover_mid (%) cloud_cover_high (%) vapour_pressure_deficit (kPa) wind_speed_10m (km/h) wind_direction is_Day
0 1980-01-01T00:00 12.7 83 10.0 0.0 0.0 0 1012.8 945.1 1 1 0 0 0.25 7.5 235 0
1 1980-01-01T01:00 12.9 82 9.9 0.0 0.0 0 1012.2 944.5 4 4 0 0 0.26 7.9 231 0

Notice that the objects in the time column are strings

'1980-01-01T00:00'

.
.
.

.

.
.
.

.

Time Series Basics - Weather data

The lecture notes show a longer method to change date times with a
function but we could also:

df = pd.read_csv(path+'/'+'Weather_Data_1980_2024(hourly).csv',
parse_dates=True,index_col=0)

.
.
.

.

.
.
.

.

Time Series Basics

Timestamps are a Pandas/Numpy object, basically what happens is
when you send a datetime into pandas it interprets it as a Timestamp.

Note: pandas.Timestamp stores extra data: nanosecond level precision
and frequency information. So it is always safe to convert from
datetime to Timestamp, but you might lose some information if you go
the other direction.

.
.
.

.

.
.
.

.

Indexing, Selection, and Subsetting

How do you select data that is in Timestamp format?

df.loc['1980-01-01 00:00:00']

.
.
.

.

.
.
.

.

Indexing, Selection, and Subsetting

Pandas will interpret our results if we leave out hours and minutes

df.loc['1980-01-01']

.
.
.

.

.
.
.

.

Indexing, Selection, and Subsetting

It will also interpret strings, even if they are not in the exact order

df.loc['01-01-1980']

.
.
.

.

.
.
.

.

Indexing, Selection, and Subsetting

You can slice the data by sending in date ranges

Since time data is chronological you can even used dates not in the
range

df.loc['1908':'1981']

.
.
.

.

.
.
.

.

Date Ranges, Frequencies, and Shifting

Often when dealing with dates you need to do some work to make
them regular relative to a fixed frequency, even if that means
introducing missing variables into your data set.

You can check the frequency using the pandas function
pd.infer_freq

.
.
.

.

.
.
.

.

Generating Date Ranges

If you have some data that you know has a particular date range, you
can generate date range data using pandas without typing in the dates
individually. To do this you need to choose a frequency.

.
.
.

.

.
.
.

.

Generating Date Ranges

Here is a very short list of common ones:

Alias Description
B Business day frequency
D Calendar day
W / W-MON Weekly (optionally anchored)
QE Quarter end
QE-JAN Quarter end (ending in January)
QS Quarter start
h Hourly
bh Business hour
min Minutely

.
.
.

.

.
.
.

.

Generating Date Ranges
• By default the frequency is Day

dates = pd.date_range('1-1-2025','1-1-2026')

• Months

dates = pd.date_range('1-1-2025','1-1-2026',
freq='ME')

• Quarters

dates = pd.date_range('1-1-2025','1-1-2026',
freq='QE-JAN')

• Generate a certain number starting a a date

dates = pd.date_range(start='1-1-2025',
periods=10, freq='D')

.
.
.

.

.
.
.

.

Frequencies and Offsets

You can use fancier frequencies to get more refined offsets for your
dates

• Here 4h is every 4 hours

dates = pd.date_range(start='1-1-2025',
periods=10, freq='4h')

• we use the WOM = week of month to get every 3rd Friday

dates = pd.date_range(start='1-1-2025',
periods=10, freq='WOM-3FRI')

.
.
.

.

.
.
.

.

Shifting Date Data

Sometimes you want to move data backward or forward in time.
Pandas has a .shift method for doing this.

mwf_days.shift(1,freq='d')

.
.
.

.

.
.
.

.

Time Zones

One of the hardest things to deal with in time series data is often time
zones. Users who enter data using different time zones can really
confuse the ordering of a data set. We typically will reference time
zones with respect to UTC or coordinated universal time. Then time
zones are referenced from the UTC, so for example Redlands is UTC - 7
during Daylight Saving Time (PDT) and UTC - 8 during Standard
Time (PST).

.
.
.

.

.
.
.

.

Time Zones

Another thing to beware of is that historically, the UTC offsets and
things like Daylight Savings have been changed. So be very careful
when comparing times across historical data. If you run into issues with
time zones for your data you should explore the pytz package. This
package has access to a database that contains world time zone
information.

The book has a chapter on dealing with Time Zone data starting on
pate 374. I am going to skip it here so we don’t get too into the weeds!

.
.
.

.

.
.
.

.

Periods and Period Arithmetic

A Period in pandas represents a span of time (e.g., a day, a month, a
quarter), not just a single timestamp. It is useful for period-based time
series data where the concept of a time interval is more relevant than
an exact point in time.

.
.
.

.

.
.
.

.

Periods and Period Arithmetic

import pandas as pd

pd.Period('2025-09', freq='M') # Represents September 2025
pd.Period('2025Q3', freq='Q') # Represents Q3 of 2025
pd.Period('2025-09-30', freq='D') # Represents the full day of Sept 30, 2025

.
.
.

.

.
.
.

.

Why would we use Periods?
1 Time Logic - Grouping

Period makes it easy to group and summarize time series data by
months, quarters, etc.

This avoids confusion from grouping by exact timestamps and ensures
consistent aggregation.

2 Avoids Timestamp Precision Errors

Timestamps are overly precise (down to nanoseconds), which may be
unnecessary or even problematic for grouped data like “September
2025”. Period avoids that overprecision.

3 Time Arithmetic at the Period Level

You can do intuitive arithmetic with Period:

.
.
.

.

.
.
.

.

Periods and Period Arithmetic

We can use the period to group our data. Let’s find the average
monthly temperature in our weather data:

df['period'] = df['time'].dt.to_period('M')
df['temperature'].groupby(by=df['period']).mean()

.
.
.

.

.
.
.

.

Quarterly Data

Financial data is often reported quarterly or relative to a fiscal year end.
Using periods can help us get dates depending on the quarter and fiscal
year. Here is a quick example:

p = pd.Period('2025Q4', freq='Q-JAN')
Look to see the start and ends dates of this quarter
print(p.asfreq('D', how='start'))
print(p.asfreq('D', how='end'))

.
.
.

.

.
.
.

.

Resampling and Frequency Conversion

But what if you had data that was missing some measurements or data
that contained too many measurements? In these cases you want to
use resampling. Resampling is the process of changing the frequency of
your time series data. It lets you:

.
.
.

.

.
.
.

.

Resampling and Frequency Conversion

• Downsample: Convert high-frequency data (e.g., minute-level) to
lower frequency (e.g., daily), usually by aggregating.

• Upsample: Convert lower-frequency data (e.g., daily) to higher
frequency (e.g., hourly), often by filling or interpolating values.

.
.
.

.

.
.
.

.

Resampling and Frequency Conversion

Pandas has the .resample method to help us with this process. It is
similar to .groupby() in that it requires a way to aggregate the data
before you get back a data frame.

NOTE - your data frame must have a a datetime-like index such as:
• DatetimeIndex
• PeriodIndex
• TimedeltaIndex

for resample to work. It always uses the index values

.
.
.

.

.
.
.

.

Downsampling

Downsampling is converting from higher frequency to lower frequency.

Let's downsample to get data only yearly
sample = df[cols].resample('YE')
sample

.
.
.

.

.
.
.

.

Downsampling

At this point pandas is ready to return the information but needs to
know how to combine the groups. In this case let’s return the average
values.

sample.mean()

.
.
.

.

.
.
.

.

Downsampling

There are lots of ways to play with the data using sampling!!

.
.
.

.

.
.
.

.

Open-high-low-close

Open-high-low-close resampling

In finance, often we want to compute four important values:

Term Meaning
Open First price in the time window
High Highest price in the time window
Low Lowest price in the time window
Close Last price in the time window

.
.
.

.

.
.
.

.

Open-high-low-close

Pandas has a function for this called .ohlc(). Let’s see what this does
with our temperature data on a daily frequency.

sample = df['temperature'].resample('D')
sample.ohlc()

.
.
.

.

.
.
.

.

Upsampling

When we did a downsample we had to aggregate the data so that many
rows are grouped into one. Upsampling is converting from lower
frequency to higher frequency. When we upsample we have to add new
rows and decide how we might fill them in.

.
.
.

.

.
.
.

.

Upsampling

Method Code Example Use Case
Forward
fill

df.resample('H').ffill()Stock prices, step functions

Backward
fill

df.resample('H').bfill()Data where future value
applies earlier

Interpolate df.resample('H').interpolate()Continuous numeric data
As-is
(NaN)

df.resample('H').asfreq()When you want to leave gaps

.
.
.

.

.
.
.

.

Upsampling

Let’s start with our weather data, but pretend like we only know the
values monthly:

.
.
.

.

.
.
.

.

Upsampling

We are pretending that we don’t know the original data - these are our
only observations! Now what if we wanted to expand this data to daily
observations?

• as frequency

sample = df_example.resample(‘D’) sample.asfreq().head(15)

.
.
.

.

.
.
.

.

Upsampling

• forward fill

sample.ffill().head(15)

.
.
.

.

.
.
.

.

Upsampling

• interpolate

sample.interpolate().head(15)

.
.
.

.

.
.
.

.

Moving Window Functions

Next we will consider functions that are evaluated over a sliding
window to time or evaluated with exponentially decaying weights. Our
book calls these “moving window functions”

When analyzing time series data, we often want to extract meaningful
trends without being overwhelmed by short-term noise. Two powerful
techniques for this are sliding window functions and exponentially
weighted functions.

.
.
.

.

.
.
.

.

Sliding Window Functions (Rolling Windows)

These compute metrics (like mean, sum, std, etc.) over a fixed-size
window that “slides” across the time series.

Use cases: - 7-day moving average of temperature - 30-day rolling
volatility of returns - Smoothing daily sales data

Why it’s useful: - Helps observe short-term trends over time -
Reduces the influence of sudden spikes or dips

.
.
.

.

.
.
.

.

Sliding Window Functions (Rolling Windows)

For this we will use the .rolling() method. Instead of looking at the
weather data here we will read in the stock data from before, this data
is more illustrative of the method and follows the book.

Load the stocks data:

.
.
.

.

.
.
.

.

Sliding Window Functions (Rolling Windows)

Now we will resample. This data looks to be daily frequency, but
maybe we actually want to have the information based on the business
day frequency.

Frequency Code Includes
Daily 'D' All calendar days (Mon–Sun)
Business Daily 'B' Only weekdays (Mon–Fri) — excludes

weekends

.
.
.

.

.
.
.

.

Sliding Window Functions (Rolling Windows)

.
.
.

.

.
.
.

.

Sliding Window Functions (Rolling Windows)

We notice how financial data has lots of ups and downs and if we zoom
into the data the change from one day to the next actually tells us very
little. This is why we often use rolling functions to understand the data.
Here we will calculate a rolling average and plot it with the data.

.
.
.

.

.
.
.

.

Sliding Window Functions (Rolling Windows)

Here we will calculate a mean over a 250 day window. You have to
choose what window to use! As the window slides across the timeseries
the data on the right becomes part of the average and the data from
the left leaves the average.

rolling_ave = df_resample[my_col].rolling(250).mean()

.
.
.

.

.
.
.

.

Sliding Window Functions (Rolling Windows)

.
.
.

.

.
.
.

.

Sliding Window Functions (Rolling Windows)

By default .rolling() cannot deal with NaN values. However there is
an optional flag ‘min_periods=’ which lets you specify the minumum
number of non-nan values that can be used to calculate. This way
NaNs can be dropped.

.
.
.

.

.
.
.

.

Sliding Window Functions (Expanding Windows)

Sometimes instead of a rolling window, you want an expanding window.
For example we could calculate the average as we expand our data over
time. In this case the right edge of the window expands to include
more data in the average.

expand_ave = df_resample[my_col].expanding().mean()

.
.
.

.

.
.
.

.

Sliding Window Functions (Expanding Windows)

.
.
.

.

.
.
.

.

Exponentially Weighted Functions (EWM)

These compute statistics using exponentially decaying weights, giving
more importance to more recent data points.

Use cases: - Real-time trend tracking (e.g., financial indicators) -
Adaptive smoothing for changing behavior - Faster reaction to recent
changes compared to rolling averages

Why it’s useful: - More responsive to recent data - Does not require a
fixed window size - Better suited for evolving or rapidly changing data

.
.
.

.

.
.
.

.

Exponentially Weighted Functions (EWM)

In Pandas we will use the ewm() exponentially weighted moving
function. Here we thing of applying a decay factor based on the span
which determines how much memory the ewm has. Often we combine
exponential weighting with moving average so that the most recent
data has more of an impact on the outcome.

rolling_ave = df_resample[my_col].rolling(250).mean()
ewm_rolling_ave = rolling_ave.ewm(span=30).mean()

.
.
.

.

.
.
.

.

Exponentially Weighted Functions (EWM)

.
.
.

.

.
.
.

.

Binary Moving Window Functions

When you are calculating things that need more than one set of
timeseries data, for example correlation or covariance, you need to send
in additional data into the functions. Here we will plot the correlation
between the percent change in the stock price of ‘AAPL’ compared to
the percent change in the benchmark index ‘SPX’

.
.
.

.

.
.
.

.

Binary Moving Window Functions

Get the percent changes
pcng_spx = df_resample['SPX'].pct_change()
pcng_aapl = df_resample['AAPL'].pct_change()

Now calculate the correlation
corr = pcng_aapl.rolling(250).corr(pcng_spx)

.
.
.

.

.
.
.

.

Binary Moving Window Functions

