
.
.
.

.

.
.
.

.

Introduction to Data Science
Web Scraping in Python

Joanna Bieri DATA101

.
.
.

.

.
.
.

.

Important Information

• Email: joanna_bieri@redlands.edu
• Office Hours: Duke 209 Click Here for Joanna’s Schedule

mailto:joanna_bieri@redlands.edu

.
.
.

.

.
.
.

.

Announcements

In NEXT WEEK - Data Ethics This week you should be reading
your book or articles.

.
.
.

.

.
.
.

.

Web Scraping Ethical Issues

There are some things to be aware of before you start scraping data
from the web.

• Some data is private or protected.
• Some websites have rules against scraping and will cut of service

to users who are clearly scraping data.
• The line between web scraping and plagiarism can be very blurry.
• Ethics are different depending on if you are using the data for a

personal project vs if you are using the project for your business or
website

.
.
.

.

.
.
.

.

Web Scraping Ethical Issues

The Ethical Scraper (from https://towardsdatascience.com/ethics-in-
web-scraping-b96b18136f01):

I, the web scraper will live by the following principles:
• If you have a public API that provides the data I’m looking for, I’ll

use it and avoid scraping all together.
• I will always provide a User Agent string that makes my intentions

clear and provides a way for you to contact me with questions or
concerns.

• I will request data at a reasonable rate. I will strive to never be
confused for a DDoS attack.

• I will only save the data I absolutely need from your page. If all I
need it OpenGraph meta-data, that’s all I’ll keep.

.
.
.

.

.
.
.

.

Web Scraping Ethical Issues

The Ethical Scraper (from https://towardsdatascience.com/ethics-in-
web-scraping-b96b18136f01):

I, the web scraper will live by the following principles:
• I will respect any content I do keep. I’ll never pass it off as my

own.
• I will look for ways to return value to you. Maybe I can drive some

(real) traffic to your site or credit you in an article or post.
• I will respond in a timely fashion to your outreach and work with

you towards a resolution.
• I will scrape for the purpose of creating new value from the data,

not to duplicate it.

.
.
.

.

.
.
.

.

Using pandas to get table data.

We have already briefly seen this in action!

If the data on the website you are interested in is already written in a
table then Pandas can grab that data and save it to a data frame.

.
.
.

.

.
.
.

.

Using pandas to get table data.
ACES DATA =
https://www.basketball-reference.com/wnba/teams/SAS/players.html

Rk Player From To Yrs Unnamed: 5 G MP FG FGA ... PTS Unnamed: 22 FG% 3P% FT% Unnamed: 26 MP.1 PTS.1 TRB.1 AST.1
0 1 Danielle Adams 2011 2015 5 NaN 155 3247 624 1472 ... 1771 NaN 0.424 0.328 0.754 NaN 20.9 11.4 4.3 0.9
1 2 Elisa Aguilar 2002 2002 1 NaN 28 141 14 33 ... 43 NaN 0.424 0.524 0.571 NaN 5.0 1.5 0.4 0.6
2 3 Kayla Alexander 2013 2017 5 NaN 154 2038 278 555 ... 692 NaN 0.501 NaN 0.764 NaN 13.2 4.5 3.1 0.3
3 4 Lindsay Allen 2018 2020 2 NaN 45 642 56 139 ... 144 NaN 0.403 0.212 0.735 NaN 14.3 3.2 1.2 2.7
4 5 Chantelle Anderson 2005 2007 3 NaN 68 1168 152 310 ... 384 NaN 0.490 NaN 0.777 NaN 17.2 5.6 2.9 0.4
... ...
146 147 Nevriye Yilmaz 2004 2004 1 NaN 7 77 6 24 ... 19 NaN 0.250 0.143 1.000 NaN 11.0 2.7 1.4 0.3
147 148 Jackie Young 2019 2024 6 NaN 199 5944 965 2075 ... 2685 NaN 0.465 0.386 0.852 NaN 29.9 13.5 4.0 4.0
148 149 Sophia Young-Malcolm 2006 2015 9 NaN 301 9258 1659 3545 ... 4300 NaN 0.468 0.223 0.718 NaN 30.8 14.3 6.0 1.8
149 150 Tamera Young 2018 2019 2 NaN 67 1509 197 495 ... 507 NaN 0.398 0.310 0.680 NaN 22.5 7.6 4.4 2.4
150 151 Shanna Zolman 2006 2009 3 NaN 87 1273 225 567 ... 635 NaN 0.397 0.402 0.811 NaN 14.6 7.3 1.1 0.8

.
.
.

.

.
.
.

.

Using pandas to get table data.
What are these unnamed columns?

columns = ['Unnamed: 5', 'Unnamed: 22','Unnamed: 26']
ACES[columns]

Unnamed: 5 Unnamed: 22 Unnamed: 26
0 NaN NaN NaN
1 NaN NaN NaN
2 NaN NaN NaN
3 NaN NaN NaN
4 NaN NaN NaN
...
146 NaN NaN NaN
147 NaN NaN NaN
148 NaN NaN NaN
149 NaN NaN NaN
150 NaN NaN NaN

.
.
.

.

.
.
.

.

Dealing with NaNs

• First NaNs are a strange data type (np.nan) they are considered a
float - like a decimal.

• In most raw data sets NaN means no data was given for that
observation and variable, but be careful NaN can also happen if
you do a calculation and accidentally divide by zero.

.
.
.

.

.
.
.

.

Dealing with NaNs

• .isna() creates a mask for whether or not there is a NaN in each
row of the data.

• .fillna() will replace NaN in your data set with whatever you put
inside the parenthesis

• .dropna() will drop all rows that contain NaN - becareful with
this command. You want to keep as much data as possible and
.dropna() might delete too much!

.
.
.

.

.
.
.

.

Dealing with NaNs

ACES.dropna(inplace=True)
ACES

Rk Player From To Yrs Unnamed: 5 G MP FG FGA ... PTS Unnamed: 22 FG% 3P% FT% Unnamed: 26 MP.1 PTS.1 TRB.1 AST.1

.
.
.

.

.
.
.

.

Oh No! We deleted our data!!!!

We got rid of any row that contains NaN, but if we look at our
unnamed columns, they are all NaNs!

Be careful when removing NaNs!

.
.
.

.

.
.
.

.

Sometimes you get errors!

• You can try installing the packages that python asks for, but some
websites use pretty advanced coding.

• When you see a 404 forbidden error, this means that the website is
trying to stop you from scraping and you would need to use even
more advanced techniques!

website = 'https://www.scrapethissite.com/pages/simple/'
df = pd.read_html(website)

HTTPError: HTTP Error 403: Forbidden

.
.
.

.

.
.
.

.

Using Beautiful Soup to get HTML code

Websites are built using html code. That code tells the web browser
(FireFox, Chrome, etc) what to display. Websites can be very simple
(just html) to much more complicated (java script +). When you load
a website you can always see the source code.

.
.
.

.

.
.
.

.

Using Beautiful Soup to get HTML code

• Right Click - view page source

This is what beautiful soup downloads. For static (simple) sites this
code is immediately available. More complicated sites might require
Python to open the webpage, let the content render, and then
download the code.

.
.
.

.

.
.
.

.

How to get data from static sites:

You should already have the packages bs4 and requests but if you get
an error try running:
!conda install -y bs4
!conda install -y requests

.
.
.

.

.
.
.

.

How to get data from static sites:

import requests
from bs4 import BeautifulSoup

website = 'https://www.scrapethissite.com/pages/simple/'

raw_code = requests.get(website)
html_doc = raw_code.text
soup = BeautifulSoup(html_doc, 'html.parser')

.
.
.

.

.
.
.

.

This is HTML code
<!DOCTYPE html>

<html lang="en">
<head>
<meta charset="utf-8"/>
<title>Countries of the World: A Simple Example | Scrape This Site | A public sandbox for learning web scraping</title>
<link href="/static/images/scraper-icon.png" rel="icon" type="image/png"/>
<meta content="width=device-width, initial-scale=1.0" name="viewport"/>
<meta content="A single page that lists information about all the countries in the world. Good for those just get started with web scraping." name="description"/>
<link crossorigin="anonymous" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/css/bootstrap.min.css" integrity="sha256-MfvZlkHCEqatNoGiOXveE8FIwMzZg4W85qfrfIFBfYc= sha512-dTfge/zgoMYpP7QbHy4gWMEGsbsdZeCXz7irItjcC3sPUFtf0kuFbDz/ixG7ArTxmDjLXDmezHubeNikyKGVyQ==" rel="stylesheet"/>
<link href="https://fonts.googleapis.com/css?family=Lato:400,700" rel="stylesheet" type="text/css"/>
<link href="/static/css/styles.css" rel="stylesheet" type="text/css"/>
<meta content="noindex" name="robots"/>
<link href="https://lipis.github.io/flag-icon-css/css/flag-icon.css" rel="stylesheet"/>
</head>
<body>
<nav id="site-nav">
<div class="container">
<div class="col-md-12">
<ul class="nav nav-tabs">
<li id="nav-homepage">

Scrape This Site

<li id="nav-sandbox">

<i class="glyphicon glyphicon-console hidden-sm hidden-xs"></i>

Sandbox

.
.
.

.

.
.
.

.

This is HTML code

WHAT A MESS!
The information in soup is ALL of the code and unless you are
awesome at reading HTML, this is indecipherable. We need to be able
to find specific parts of this to extract the data.

.
.
.

.

.
.
.

.

Extracting data from HTML:

We will use the soup.find_all() function.

Here is the simplified function signature:

soup.find_all(name=None,attrs={})

You can type soup.find_all? and run it to see all the information about
additional arguments and advanced processes.

.
.
.

.

.
.
.

.

Extracting data from HTML:

Here is how we will mostly use it, but there are much more
advanced things you can do:

soup.find_all(<type of section>, <info>)

.
.
.

.

.
.
.

.

Extracting data from HTML:

The .find_all() function searches through the information in soup to
match and return only sections that match the info. Here are some
important types you might search for:

.
.
.

.

.
.
.

.

Extracting data from HTML:

• ‘h2’ - this is a heading
• ‘div’ - this divides a block of information
• ‘span’ - this divides inline information
• ‘a’ - this specifies a hyperlink
• ‘li’ - this is a list item
• class_= - many things have the class label (notice the underscore!)
• string= - you can also search by strings.

.
.
.

.

.
.
.

.

Using Developer tools:

To figure out what data to extract I suggest you use developer tools on
the website to find what you need. Navigate to the website:

Scrape This Site - Website

I really like Brave Browser or Google Chrome for this, but most
browsers with have More Tools/Developer Tools where you can see
the code.

https://www.scrapethissite.com/pages/simple/

.
.
.

.

.
.
.

.

Search for all the country names

The names of the country are inside

<h3 class="country-name">

So lets search for this:

result = soup.find_all('h3',class_="country-name")

.
.
.

.

.
.
.

.

This is still a mess

We can see the country names but they are surrounded by other junk.
Here is how we will handle this.

1 We will start and EMPTY data frame using

DF = pd.DataFrame()

2 We will add our soup.find_all results as a column of the data
frame

3 We will fix the data to strip off all of the unneeded text.

.
.
.

.

.
.
.

.

How to get the text

What this returns is a list of all the text that is inside a link block of
code. If we just want to look at the text we can!

result[0].text.lstrip().rstrip()

.
.
.

.

.
.
.

.

Put this into a data frame

DF = pd.DataFrame()
DF['country']=result
DF['country'] =DF['country'].apply(lambda x: x.text.rstrip().lstrip())
DF

.
.
.

.

.
.
.

.

Put this into a data frame

country
0 Andorra
1 United Arab Emirates
2 Afghanistan
3 Antigua and Barbuda
4 Anguilla
... ...
245 Yemen
246 Mayotte
247 South Africa
248 Zambia
249 Zimbabwe

.
.
.

.

.
.
.

.

Lets try again and this time add the country capital
result = soup.find_all('span',class_="country-capital")
DF['capital']=result
DF['capital'] = DF['capital'].apply(lambda x: x.text)
DF

country capital
0 Andorra Andorra la Vella
1 United Arab Emirates Abu Dhabi
2 Afghanistan Kabul
3 Antigua and Barbuda St. John's
4 Anguilla The Valley
...
245 Yemen Sanaa
246 Mayotte Mamoudzou
247 South Africa Pretoria
248 Zambia Lusaka
249 Zimbabwe Harare

.
.
.

.

.
.
.

.

Where can you get more practice

Here is a website dedicated to allowing students to practice
webscraping:

www.scrapethissite.com

There are “sandbox” websites that are indended for scraping. The only
thing the site asks is:

https://www.scrapethissite.com/pages/

.
.
.

.

.
.
.

.

Please be Well-Behaved

Just like any site you’d scrape out in the wild wild west (www), please
be mindful of other users trying to access the site. From a technical
standpoint, you must observe the following rules:

• Clients may only make a maximum of one request per second
• Clients must send an identifying user agent
• Clients must respect this site’s robots.txt file

Any client that violates the rules above or otherwise tries to interfere
with the site’s operation will be subject to a temporary or permanent
ban.

Be a good web scraping citizen.

