Introduction to Data Science
Data Wrangling Continued

Joanna Bieri DATA101

Important Information

® Email: joanna_bieri@redlands.edu
® Office Hours: Duke 209 Click Here for Joanna's Schedule

mailto:joanna_bieri@redlands.edu

Last Class - Definitions

Make sure you can define and come up with examples for

® Raw Data

® Tidy Data

® Displayed Data

® Summarized Data

Last Class - Code

We learned how to select subsets of the data and sort the data. You
should be able to:

Find all the column names and print them.

Slice the data by selecting a subset of the columns
Sort the data either ascending or descending

Mask the data using logical operators

This class

Our goal is to continue learning commands that helps us retrieve pieces
of the data. Today we will:

® | earn how to do more advanced masking

® Find count unique values with value_counts() and
drop_duplicates()

® Add new columns

Use group_by() to do statistics on groups

Load the Data and look at the basic info
Same data as last class!
® Data from two hotels: one resort and one city hotel
® Observations: Each row represents a hotel booking
Data Information: Tidy Tuesday

https://github.com/rfordatascience/tidytuesday/blob/master/data/2020/2020-02-11/readme.md

Look at the Column names!
columns_list = 1list(DF_raw_hotels.keys())
for i in columns_list:

print (i)

hotel

is_canceled

lead_time
arrival_date_year
arrival_date_month
arrival_date_week_number
arrival_date_day_of_month
stays_in_weekend_nights
stays_in_week_nights
adults

children

babies

More advanced boolean masks - combining masks

Last time we learned about boolean masks. We were able to use a
mask to only show certain rows or columns in the data.

Basic Operators

Operator Definition

< less than

> greater than

<= less than or equal to
>= greater than or equal to

exactly equal to
not equal to

More advanced boolean masks - combining masks

Advanced Operators

Operator Definition

and check if two things are both true
or check if one of two things is true
in checks if something is in another thing

! not checks if something is false

More advanced boolean masks - Applying one at a time

What does this code do?

maskl = (DF_raw_hotels['hotel']=='Resort Hotel')
DF_hotels_mask=DF_raw_hotels [maski]

mask?2 = (DF_hotels _mask['is_canceled']==1)
DF_final = DF_hotels_mask[mask2]

DF_final

More advanced boolean masks - Combining Masks

You can merge this command into one line using:

Operator Definition

& check if two things are both true
(bitwise = works on multiple values)

| check if one of two things is true
(bitwise = works on multiple values)

mask = (DF_raw_hotels['hotel']=='Resort Hotel')
&
(DF_raw_hotels['is_canceled']==1)
DF_raw_hotels [mask]

Another Example of Combining Masks

This time we will ask:

® Show only results for visitors from USA or GBR.
® Can you figure out how to do this?

Another Example of Combining Masks - solution

mask = (DF_raw_hotels['country']=='USA"')
|
(DF_raw_hotels['country']l=='GBR')
DF_raw_hotels[mask]

Finding unique values

Often we want to see how many different categories are contained in a
categorical column. This lets us see what the choices are for that entry.

Unique in one column

® select just one column

my_columns = ['market_segment']

® grab that column of the data frame

DF_raw_hotels[my_columns]

® then applying the drop_duplicates() command
DF_raw_hotels[my_columns].drop_duplicates()

Unique in one column - Result

market_segment

>~ W o

125
413
40600
49013

Direct
Corporate
Online TA
Offline TA/TO
Complementary
Groups
Undefined
Aviation

Unique across two columns

® .drop_duplicates() can look at more than one column for
duplicates.

® |f we read down just one column, but there are no duplicates if we
consider both columns.

my_columns = ['market_segment','customer_type']
DF_raw_hotels [my_columns].drop_duplicates()

Unique across two columns - results
market_segment customer_type

0 Direct Transient

3 Corporate Transient

4 Online TA Transient

9 Offline TA/TO Transient

16 Offline TA/TO Contract

a7 Offline TA/TO Transient-Party
125 Complementary Transient

127 Online TA Transient-Party
260 Direct Transient-Party
413 Groups Transient-Party
417 Groups Transient

539 Online TA Group

1530 Corporate Transient-Party
1539 Direct Group

1T ro—= NLCCL . . TA /" T\ ol

Counting unique values in one column

Counts of how often labels were seen in the data = Frequency, Value
Counts, Frequency Counts, etc.

In Python we can use the .value_counts() command.

my_columns = ['market_segment']
DF_raw_hotels[my_columns] .value_counts()

Counting unique values in one column - results

market_segment

Online TA 56477
Offline TA/TO 24219
Groups 19811
Direct 12606
Corporate 5295
Complementary 743
Aviation 237
Undefined 2

Name: count, dtype: int64

Counting unique values in two columns

my_columns = ['market_segment','customer_type']
DF_raw_hotels[my_columns] .value_counts()

Counting unique values in two columns - results
market_segment customer_type

Online TA Transient 51299
Offline TA/TO Transient 14054
Direct Transient 11336
Groups Transient-Party 10633

Transient 8427
Offline TA/TO Transient-Party 8137
Corporate Transient 3576
Online TA Transient-Party 3513
Offline TA/TO Contract 1817
Corporate Transient-Party 1668
Online TA Contract 1486
Direct Transient-Party 1122
Groups Contract 735
Complementary Transient 703

Aviation Transient 218

Counting unique values in two columns - results

This lets us separate Online TA into four subgroups:

Online
Online
Online
Online

TA
TA
TA
TA

Transient 51299
Transient-Party 3513
Contract 1486

Group 179

Counting unique values - Unsorted

Sometimes the way that .value_counts() sorts the data in descending
order, actually makes the data harder to read!

You can use the flag sort=False to stop this sorting.

my_columns = ['market_segment','customer_type']
DF_raw_hotels[my_columns] .value_counts(sort=False)

Counting unique values - Unsorted - Results

market_segment

Aviation

Complementary

Corporate

Direct

customer_type
Group

Transient
Transient-Party
Contract

Group

Transient
Transient-Party
Contract

Group

Transient
Transient-Party
Contract

Group

Transient
Transient-Party

218
17

703
32
22
29

3576
1668
14
134
11336
1122

Counting unique values - Ascending

You can also ask to sort the data ascending with ascending=True

my_columns = ['market_segment','customer_type']
DF_raw_hotels[my_columns] .value_counts(ascending=True)

Counting unique values - Ascending - Results
market_segment customer_type

Aviation Group 2
Complementary Contract 2
Undefined Transient-Party 2
Complementary Group 6
Direct Contract 14
Groups Group 16
Aviation Transient-Party 17
Corporate Contract 22

Group 29
Complementary Transient-Party 32
Direct Group 134
Online TA Group 179
Offline TA/TO Group 211
Aviation Transient 218

Complementary Transient 703

Saving Unique Values to a Data Frame

® First we do the value counts like normal and then save the
information in the variable my_counts

my_columns = ['market_segment', 'customer_type']
my_counts = DF_raw_hotels[my_columns] .value_counts()

® Then we do .reset_index().rename(columns={"index”:
“value”, 0: “count”}). In this class you can just copy and past
this after the variable name.

my_counts = my_counts.reset_index () .rename(columns={"1i

Saving Unique Values to a Data Frame - Results

market_segment customer_type count
0 Online TA Transient 51299
1 Offline TA/TO Transient 14054
2 Direct Transient 11336
3 Groups Transient-Party 10633
4 Groups Transient 8427
5 Offline TA/TO Transient-Party 8137
6 Corporate Transient 3576
7 Online TA Transient-Party 3513
8 Offline TA/TO Contract 1817
9 Corporate Transient-Party 1668
10 Online TA Contract 1486
11 Direct Transient-Party 1122
12 Groups Contract 735
13 Complementary Transient 703

Adding a column to a Data Frame

In many cases your data will have information across multiple columns
that you will want to combine. You can do this by adding a new
column to your data frame.

In the raw data there are two columns ‘children’ and ‘babies’, but
what if | actually wanted to know the total number of little ones that
families were traveling with. In other words, | wanted to combine the
information about children and babies (add it up). We do this my
adding a new column!

Adding a column to a Data Frame

® First you call your data frame and put in a name that is not
already in the columns:

DF_raw_hotels['little ones']

® Then you set that equal to the calculation you want to do

DF_raw_hotels['little_ones']=
DF_raw_hotels['children'] + DF_raw_hotels['babies']

® This will save the new calculation in a column with the name
‘little_ones’

Grouping the data frame into chunks

Grouping allows us to grab data in categorical groups and then apply a
function to all of the variables in those groups.

Using the .groupby command: we are grouping by the ‘hotel’ column
which has two different options (City Hotel and Resort Hotel).

DF_raw_hotels.groupby(by=['hotel'])

Once the data is grouped we can do different operations.

DF_raw_hotels.groupby(by=['hotel']) .sum()

Grouping the data frame into chunks - results

is_canceled lead_time arrival_date_year arrival_date_m

hotel

City Hotel 33102 8705335 159943106 JulyJulyJulyJuly
Resort Hotel 11122 3712588 80765825 JulyJulyJulyJuly
hotel

City Hotel JulyJulyJulyJulyJulyJulyJulyJulyJulyJulyJulyJu

Resort Hotel JulyJulyJulyJulyJulyJulyJulyJulyJulyJulyJulyJu
Name: arrival_date_month, dtype: object

Grouping the data frame into chunks

Let's select just columns we care about, columns that are numerical:

my_columns = ['adults','children','little_ones', 'babies']
DF_raw_hotels.groupby(by=['hotel']) [my_columns] .sum()

adults children little_ones babies
hotel

City Hotel 146838 7248.0 7640.0 392
Resort Hotel 74798 5155.0 5712.0 557

Grouping the data frame into chunks

There are lots of different operations you could use:

.min()
.max()
.mean()
.median()
.sum()
.prod()
.count()
.describe()

Grouping the data frame into chunks - describe

DF_raw_hotels.groupby(by=['hotel']) [my_columns] .describe()

adults
count mean std min 25% 50% 75% n
hotel

City Hotel 79330.0 1.850977 0.509292 0.0 2.0 2.0 2.0 4
Resort Hotel 40060.0 1.867149 0.697285 0.0 2.0 2.0 2.0 5

Grouping to quickly generate data

® The .groupby() function lets you quickly generate data.

® |n just one command we are able to look at the total number of
occupants for each of the columns (adults, children, little_ones,
and babies) for each month in the data set.

DF_raw_hotels.groupby(by=['arrival_date_month'])
[my_columns] .sum()

Grouping to quickly generate data - results

adults children little_ones babies
arrival_date__month

April 20806 1141.0 1194.0 53
August 27795 2780.0 2976.0 196
December 12382 736.0 814.0 78
February 14450 790.0 849.0 59
January 10024 452.0 500.0 48
July 25164 2322.0 2443.0 121
June 20353 1057.0 1128.0 71
March 17675 700.0 757.0 57
May 21539 845.0 917.0 72
November 11488 279.0 324.0 45
October 20279 703.0 765.0 62

September 19681 598.0 685.0 87

What's next?

Once you have a nice data summary, you are ready to make some plots!
You can start asking more questions of your data.

Use a sense of curiosity and exploration

