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Math for Data Science
Calculus - Partial Derivatives

Joanna Bieri DATA100
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Important Information

• Email: joanna_bieri@redlands.edu
• Office Hours take place in Duke 209 unless otherwise noted –

Office Hours Schedule

mailto:joanna_bieri@redlands.edu
https://joannabieri.com/schedule.html
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Today’s Goals:

• Extend our understanding of derivatives to functions of more
variables

• Calculate partial derivatives
• More Optimization!
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(Review) Derivative Definition

𝑑𝑦
𝑑𝑥 = lim

𝑑𝑥→0
𝑓(𝑥 + 𝑑𝑥) − 𝑓(𝑥)

𝑑𝑥
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(Review) First Derivative Test
• The function has a local maximum or minimum whenever the

derivative equals zero:

𝑑𝑦
𝑑𝑥 = 0

we solve this for all of the x-values where this is true, 𝑥∗.
• The points (𝑥∗, 𝑦(𝑥∗)) where the derivative equations zero are

called “stationary points” or “critical points”
• We can tell if a critical point is a local max by the derivative

going from increasing to decreasing, positive to negative, as we
cross the point.

• We can tell if a critical point is a local min by the derivative
going from decreasing to increasing, negative to positive, as we
cross the point.
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(Review) Second Derivative Test

The second derivative tells us about the curvature of the function

The notation for the second derivative:

𝑑2𝑦
𝑑𝑥2

• If the second derivative is positive then the function is concave up
and our critical point is a local min

• If the second derivative is negative then the function is concave
down and our critical point is a local max
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(Review) Global Maximum and Minimum

Check y-values of all of the critical points but also check the end
points or take the limit if there are no clear endpoints.
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Functions of more than one variable
Most of the time in Data Science you will have more than one variable
for the data you are interested in. In fact, you often have 10’s 100’s or
1000’s of variables that you are dealing with. We will start our
discussion with functions of two variables.

Imagine that now instead of a function that given 𝑥 returns 𝑦 which is
a height above the 𝑥-axis we now have a function of two variables:

𝑧 = 𝑓(𝑥, 𝑦)

In this function we give 𝑥 and 𝑦 values and it returns a 𝑧 value which is
a height above the 𝑥𝑦-plane. Here is a plot of one such function:

𝑧 = 𝑥2 + 𝑦2
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Functions of more than one variable
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Questions

• Does this function have a slope?
• Does this function have curvature?
• Does this function have a maximum or minimum?
• Could we take the limit of this function?
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Functions of more than one variable

Let’s look at another more complicated function.

𝑧 = sin(√𝑥2 + 𝑦2)
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Functions of more than one variable
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Questions

• If we can visualize a function of two variables as a surface, how do
we visualize a function of three or more variables?

• Can we do math with functions of three or more variables?
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Even more variables

For three variables 𝜔 = 𝑓(𝑥, 𝑦, 𝑧) we could use something called level
surfaces, which are “slices” of the function where the 𝜔 value is held
constant. Kind of like a 3𝐷 topographic map.

For more than three variables it is impossible to visualize using a graph,
we just run out of axes in 3D space!

BUT we can absolutely do math no mater how many variables
we have! This is the power of abstract thinking.
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Functions of Two Variables

We will develop our ideas for functions of two variables, since they are
easy to visualize, but remember these ideas will work no mater how
many variables we have.

When we looked at the function

𝑧 = 𝑥2 + 𝑦2

we could see that it has slope and curvature and even a minimum!
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Partial Derivatives - walking on the graph
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Partial Derivatives - walking on the graph

• If I started walking on the 𝑦 = −10 side (closest to us) and walked
in a straight line along 𝑥 = 0 what would my walk be like right at
that moment?

I would be walking downhill!
• Could I say that the slope of a tangent line at that point in only

the 𝑦 direction would be negative?

Sure, works for me!
• What does this sound like?

Um… a derivative?
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Partial Derivative in the 𝑦 direction (and 𝑥 direction)
We can define this idea EXACTLY like we did with the ordinary
derivative. We just keep 𝑦 as a constant and think about tangent lines
going just in the 𝑦 direction.

𝜕𝑧
𝜕𝑦 = lim

𝑑𝑦→0
𝑓(𝑥, 𝑦 + 𝑑𝑦) − 𝑓(𝑥, 𝑦)

𝑑𝑦

But couldn’t we do the same thing in the 𝑥 direction?

𝜕𝑧
𝜕𝑥 = lim

𝑑𝑥→0
𝑓(𝑥 + 𝑑𝑥, 𝑦) − 𝑓(𝑥, 𝑦)

𝑑𝑥

Video:

{{https://youtu.be/V-rchWU92ac}}
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Sympy can do these too!

x,y = sp.symbols('x,y')
z = x**2+y**2

sp.diff(z,y)
sp.diff(z,x)

sp.diff(z,y,y)
sp.diff(z,x,x)
sp.diff(z,x,y)
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Interpreting the Partial Derivative

Just like with the ordinary derivative we are talking about slope. So we
can see where the slope is negative or positive. But we can also look
for maximums and minimums!
Question

• What was our process for finding critical points in functions of one
variable?

• What might our process be now?
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Critical Points

In this case we still want to look for where the slope is equal to zero,
but now we have two slopes to consider:

𝜕𝑧
𝜕𝑦 = 0

and

𝜕𝑧
𝜕𝑥 = 0
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Critical Points

in our example above

𝜕𝑧
𝜕𝑦 = 2𝑦 = 0 → 𝑦 = 0

𝜕𝑧
𝜕𝑥 = 2𝑥 = 0 → 𝑥 = 0

so we have one critical point (0, 0, 𝑧(0, 0)) = (0, 0, 0). Is this a max or
a min?
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Critical Points

Is this a max or a min?

We can look at the second derivatives!
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Critical Points
Here is the notation for these second derivatives - which still talk about
curvature:

𝜕2𝑧
𝜕𝑦2

𝜕2𝑧
𝜕𝑥2

𝜕2𝑧
𝜕𝑦𝜕𝑥 = 𝜕2𝑧

𝜕𝑥𝜕𝑦

We have to consider all three of the partial derivatives to be sure we
have a max or min.
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Critical Points

Is this a max or a min?

Here is the formula:

The determinant of the Hessian matrix (D) is calculated as:

𝐷 = 𝜕2𝑧
𝜕𝑦2

𝜕2𝑧
𝜕𝑥2 − ( 𝜕2𝑧

𝜕𝑦𝜕𝑥)
2

• 𝐷 > 0 and 𝜕2𝑧
𝜕𝑥2 > 0: Local minimum

• 𝐷 > 0 and 𝜕2𝑧
𝜕𝑥2 < 0: Local maximum

• 𝐷 < 0: Saddle point
• 𝐷 = 0: Test is inconclusive



.
.
.

.

.
.
.

.

Critical Points

Is this a max or a min?

In our example:

𝐷 = (2)(2) − 0 > 0

So we have a local minimum. This makes sense because we see that
BOTH the second derivatives in 𝑥 and 𝑦 indicate that the function is
concave up (valley) and the mixed partial derivative is not going to
overcome this.

FYI a non-zero mixed partial derivative indicates a kind of “twisting -
curvature” in the surface.
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Derivatives - Critical Points - Another Example

Consider the function

𝑧 = 10𝑥2 − 𝑦3

1 Plot the function
2 Take the derivatives
3 Interpret the derivatives and critical points.
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Derivatives - Critical Points - Another Example
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Derivatives - Critical Points - Another Example

The function:

10𝑥2 − 𝑦3

dz/dx

20𝑥
dz/dy

−3𝑦2
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Derivatives - Critical Points - Another Example

d2z/dx2

20
d2z/dxdy

0
d2x/xy2

−6𝑦
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Derivatives - Critical Points - Another Example

To have a critical point I would need BOTH 2𝑥 = 0 and −3𝑦2 = 0.
This happens when 𝑥 = 𝑦 = 0 or at the point (0, 0, 0).
I have to decide if this is a maximum or minimum - look at the second
derivatives and plug in the critical points! The second derivative in x
is positive, but the other two are zero. This means that 𝐷 = 0 so we
have a Saddle Point
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Saddle Points

Saddle Point Saddle points are points where the function is s-shaped
in one direction and u-shaped in the other but the slope right in the
middle is zero. Look back at the graph. In the x-direction we do have a
minimum, but in the y-direction it is the flat part of the s-shape.

To have a verified maximum or minimum we would need BOTH
directions to be conclusive.
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Application - Remember Least Squares?

Remember when we were doing linear regression and we said we needed
to minimize the mean squared error… here is a reminder:

The goal is to minimize the sum of square distances between the line
̂𝑦 = 𝛽0 + 𝛽1𝑥 and the data point values 𝑦. Lets look at this is parts:
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Application - Remember Least Squares?

1 What is the distance between 𝑦 and ̂𝑦 for each point in the data?

𝑦𝑖 − ̂𝑦𝑖 = 𝑦𝑖 − (𝛽0 + 𝛽1𝑥𝑖)

This is also called the residual or error for point 𝑖 in our data.

2 What is the square distance?

(𝑦𝑖 − (𝛽0 + 𝛽1𝑥𝑖))2

We just square the residual or error for point 𝑖 in our data.
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Application - Remember Least Squares?

3 How do we add these up?

Using the summation notation:

∑
𝑖

(𝑦𝑖 − (𝛽0 + 𝛽1𝑥𝑖))2

Now we are adding up the square error for all of the points in the data.

4 How can we minimize this?

We need to choose 𝛽0 and 𝛽1 that are a minimum for this function.
Lets look at the function for our example data.
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Imagine we just have two data points:
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Application - Remember Least Squares?

Get the symbolic representation - Sympy

(0.548813503927325 − 𝑏0)2 +
1.4766851961446 (−0.822917010033751𝑏0 − 0.411458505016876𝑏1 + 1)2

This is a function of two variables and we are looking for a minimum,
𝑓 = 𝑓(𝛽0, 𝛽1).
We will plot this function and then find the critical points!
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Application - Remember Least Squares?
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Does the least squares function have a minimum?

We can check - but YES - this is a special kind of function a quadratic
and it will have a max or min. Let’s do the math!
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Application - Remember Least Squares?
df/db0

4.0𝑏0 + 1.0𝑏1 − 3.52800574059949
df/db1

1.0𝑏0 + 0.5𝑏1 − 1.21518936637242
We need two equations to be equal to zero

4.0𝑏0 + 1.0𝑏1 − 3.52800574059949 = 0
1.0𝑏0 + 0.5𝑏1 − 1.21518936637242 = 0

Lets use sympy to solve this.

{b0: 0.548813503927325, b1: 1.33275172489019}
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Application - Remember Least Squares?

We found a critical point! 𝛽0 = 0.548813503927325 and
𝛽1 = 1.33275172489019. Is this a max, min, or saddle?
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Application - Remember Least Squares?

d2f/db02

4.0
d2f/db12

0.5
d2f/db0db1

1.0
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Application - Remember Least Squares?

𝐷 = (4)(0.5) − 1 = 1 > 0

𝜕2𝑧
𝜕𝑥2 > 0

So this is a minimum. These values of 𝛽 minimize the square error
function and they should be the line of best fit for our data:

𝑦 = 𝛽0 + 𝛽1𝑥 = 0.548813503927325 + 1.33275172489019𝑥

Lets look at the graph of our points and this line
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Application - Remember Least Squares?
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Application - Remember Least Squares?

IT WORKED!!!

Now we can do this same thing for even more points!
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Application - Remember Least Squares?
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Application - Remember Least Squares?
(0.548813503927325 − 𝑏0)2 +
(−𝑏0 − 0.99𝑏1 + 0.994695476192547)2 +
(−𝑏0 − 0.97𝑏1 + 0.990107546187494)2 +
(−𝑏0 − 0.87𝑏1 + 0.963940510758442)2 +
(−𝑏0 − 0.82𝑏1 + 0.884147496348784)2 +
(−𝑏0 − 0.79𝑏1 + 0.908727718954244)2 +
(−𝑏0 − 0.77𝑏1 + 0.890196561213169)2 +
(−𝑏0 − 0.75𝑏1 + 0.789187792254321)2 +
(−𝑏0 − 0.69𝑏1 + 0.786098407893963)2 +
(−𝑏0 − 0.67𝑏1 + 0.767101275793061)2 +
(−𝑏0 − 0.64𝑏1 + 0.836582361680054)2 +
(−𝑏0 − 0.63𝑏1 + 0.768182951348614)2 +
(−𝑏0 − 0.61𝑏1 + 0.720375141164305)2 +
(−𝑏0 − 0.6𝑏1 + 0.75896958364552)2 +
(−𝑏0 − 0.59𝑏1 + 0.834425592001603)2 +
(−𝑏0 − 0.57𝑏1 + 0.823291602539782)2 +
(−𝑏0 − 0.55𝑏1 + 0.711309517884996)2 +
(−𝑏0 − 0.54𝑏1 + 0.748876756094835)2 +
(−𝑏0 − 0.53𝑏1 + 0.632044810748028)2 +
(−𝑏0 − 0.51𝑏1 + 0.94860151346232)2 +
(−𝑏0 − 0.49𝑏1 + 0.853710770942623)2 +
(−𝑏0 − 0.48𝑏1 + 0.795428350924184)2 +
(−𝑏0 − 0.47𝑏1 + 0.598926297654853)2 +
(−𝑏0 − 0.46𝑏1 + 0.670382561073841)2 +
(−𝑏0 − 0.43𝑏1 + 0.49022547162927)2 +
(−𝑏0 − 0.41𝑏1 + 0.847031953799341)2 +
(−𝑏0 − 0.4𝑏1 + 0.759507900573786)2 +
(−𝑏0 − 0.37𝑏1 + 0.986933996874757)2 +
(−𝑏0 − 0.36𝑏1 + 0.972095722722421)2 +
(−𝑏0 − 0.35𝑏1 + 0.967635497075877)2 +
(−𝑏0 − 0.34𝑏1 + 0.358789800436355)2 +
(−𝑏0 − 0.33𝑏1 + 0.898433948868649)2 +
(−𝑏0 − 0.32𝑏1 + 0.776150332216549)2 +
(−𝑏0 − 0.3𝑏1 + 0.564555612104627)2 +
(−𝑏0 − 0.29𝑏1 + 0.704661939990524)2 +
(−𝑏0 − 0.28𝑏1 + 0.801848321750072)2 +
(−𝑏0 − 0.26𝑏1 + 0.403353287409046)2 +
(−𝑏0 − 0.25𝑏1 + 0.889921021327524)2 +
(−𝑏0 − 0.24𝑏1 + 0.358274425868933)2 +
(−𝑏0 − 0.22𝑏1 + 0.681479362252932)2 +
(−𝑏0 − 0.18𝑏1 + 0.958156750949851)2 +
(−𝑏0 − 0.16𝑏1 + 0.180218397440326)2 +
(−𝑏0 − 0.15𝑏1 + 0.237129299701541)2 +
(−𝑏0 − 0.14𝑏1 + 0.211036058197887)2 +
(−𝑏0 − 0.12𝑏1 + 0.688044561093932)2 +
(−𝑏0 − 0.11𝑏1 + 0.638894919752904)2 +
(−𝑏0 − 0.1𝑏1 + 0.891725038082665)2 +
(−𝑏0 − 0.09𝑏1 + 0.473441518825778)2 +
(−𝑏0 − 0.07𝑏1 + 0.96177300078208)2 +
(−𝑏0 − 0.06𝑏1 + 0.497587211262693)2 +
(−𝑏0 − 0.05𝑏1 + 0.695894113066656)2 +
(−𝑏0 − 0.04𝑏1 + 0.463654799338905)2 +
(−𝑏0 − 0.03𝑏1 + 0.574883182996897)2 +
(−𝑏0 − 0.02𝑏1 + 0.622763376071644)2 +
(−𝑏0 − 0.01𝑏1 + 0.725189366372419)2 +
1.00524655468657 (−0.997387000108195𝑏0 − 0.169555790018393𝑏1 + 1)2+
1.01840100773196 (−0.990924553839731𝑏0 − 0.208094156306343𝑏1 + 1)2+
1.02116921612618 (−0.989580532127584𝑏0 − 0.227603522389344𝑏1 + 1)2+
1.03780097333821 (−0.981619016393975𝑏0 − 0.638052360656084𝑏1 + 1)2+
1.08744636119784 (−0.958950252431525𝑏0 − 0.728802191847959𝑏1 + 1)2+
1.08923195765663 (−0.958163918313931𝑏0 − 0.0766531134651145𝑏1 + 1)2+
1.09476623339516 (−0.955738988780663𝑏0 − 0.554328613492785𝑏1 + 1)2+
1.10627874335845 (−0.950753025599441𝑏0 − 0.874692783551485𝑏1 + 1)2+
1.11428426277477 (−0.947331550446595𝑏0 − 0.123153101558057𝑏1 + 1)2+
1.12362575443084 (−0.943385414642582𝑏0 − 0.179243228782091𝑏1 + 1)2+
1.14532112741286 (−0.934407603948879𝑏0 − 0.46720380197444𝑏1 + 1)2+
1.14879875357028 (−0.932992219718588𝑏0 − 0.363866965690249𝑏1 + 1)2+
1.158077724723 (−0.929246953419767𝑏0 − 0.724812623667419𝑏1 + 1)2+
1.17556269330413 (−0.922310392810085𝑏0 − 0.285916221771126𝑏1 + 1)2+
1.22493256241839 (−0.903532773478216𝑏0 − 0.397554420330415𝑏1 + 1)2+
1.24409371649816 (−0.89654780515974𝑏0 − 0.762065634385779𝑏1 + 1)2+
1.24909949010981 (−0.894749541390825𝑏0 − 0.375794807384147𝑏1 + 1)2+
1.24988638940786 (−0.894467840331971𝑏0 − 0.715574272265577𝑏1 + 1)2+
1.25582923482233 (−0.8923489265455𝑏0 − 0.401557016945475𝑏1 + 1)2+
1.28412266292754 (−0.88246348633367𝑏0 − 0.838340312016986𝑏1 + 1)2+
1.38914119664751 (−0.848451075439407𝑏0 − 0.169690215087881𝑏1 + 1)2+
1.38921865514557 (−0.848427421617222𝑏0 − 0.602383469348228𝑏1 + 1)2+
1.47163180931346 (−0.824328692671661𝑏0 − 0.46162406789613𝑏1 + 1)2+
1.47542057804641 (−0.823269605374432𝑏0 − 0.222282793451097𝑏1 + 1)2+
1.48491029187832 (−0.820634727307272𝑏0 − 0.738571254576545𝑏1 + 1)2+
1.49881987973803 (−0.816817958625325𝑏0 − 0.661622546486513𝑏1 + 1)2+
1.5114393413757 (−0.81340088172391𝑏0 − 0.764596828820475𝑏1 + 1)2+
1.62901722094459 (−0.783496683187417𝑏0 − 0.485767943576199𝑏1 + 1)2+
1.75230897537116 (−0.755430747157041𝑏0 − 0.287063683919676𝑏1 + 1)2+
1.78181256158342 (−0.74915035875537𝑏0 − 0.54687976189142𝑏1 + 1)2+
1.91337517741941 (−0.722936133901506𝑏0 − 0.621725075155296𝑏1 + 1)2+
1.97852765097605 (−0.710933432501015𝑏0 − 0.597184083300853𝑏1 + 1)2+
2.11978019792232 (−0.686838426447803𝑏0 − 0.604417815274067𝑏1 + 1)2+
2.18822073733428 (−0.676012046755559𝑏0 − 0.500248914599113𝑏1 + 1)2+
2.19334094685542 (−0.675222532990699𝑏0 − 0.445646871773862𝑏1 + 1)2+
2.27519163534152 (−0.662965622160794𝑏0 − 0.344742123523613𝑏1 + 1)2+
2.30415674220155 (−0.658785437508237𝑏0 − 0.447974097505601𝑏1 + 1)2+
2.31792135425904 (−0.656826477987516𝑏0 − 0.545165976729639𝑏1 + 1)2+
2.3917022575349 (−0.64661599492073𝑏0 − 0.620751355123901𝑏1 + 1)2+
2.48822350681717 (−0.633950437186184𝑏0 − 0.576894897839427𝑏1 + 1)2+
2.71039326302085 (−0.60741266833126𝑏0 − 0.564893781548071𝑏1 + 1)2+
2.810516337833 (−0.596495185758643𝑏0 − 0.41754663003105𝑏1 + 1)2+
2.87899819039686 (−0.589358164187122𝑏0 − 0.424337878214728𝑏1 + 1)2+
3.27226402930491 (−0.552809923960083𝑏0 − 0.541753725480881𝑏1 + 1)2+
3.30983865451527 (−0.549663106718008𝑏0 − 0.489200164979027𝑏1 + 1)2
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Application - Remember Least Squares?

This looks scary, but look closer! This is just a function of two
variables! We could do the same thing:

1 Take partial derivatives.
2 Find critical points.
3 Check if there is a max or min.

And if we look at a plot it does have the same quadratic shape!
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Application - Remember Least Squares?
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Application - Remember Least Squares?

This is where we got those formulas that are used for general least
squares!

𝛽1 = 𝑛 ∑𝑖 𝑥𝑖𝑦𝑖 − ∑𝑖 𝑥𝑖 ∑𝑖 𝑦𝑖
𝑛 ∑𝑖 𝑥2

𝑖 − (∑𝑖 𝑥𝑖)2)

𝛽0 = ̄𝑦 − 𝛽1 ̄𝑥

where ̄𝑥 and ̄𝑦 are the averages of the 𝑥𝑖 and 𝑦𝑖 data points
respectively.
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You Try

Find all the critical points and classify them as maximum, minimum, or
saddle using the partial derivative.

• Number 1
𝑧 = 5𝑒−(𝑥2+2∗𝑦2)

• Number 2
𝑧 = −𝑥4 + 4𝑥2 − 𝑦2(𝑥 − 1.5)

for this one I changed my x and y range in the graph a few times
[−2, 2],[−5, 5],[−10, 10], this gave a much better view of the
function!
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You Try

1 Copy and paste the 3d plotting code and use it to plot the
function.

• You might need to change the range of x and y to get the best view
of the function

2 Enter the function using sympy
3 Take all the derivatives
4 Find any critical points

• Use sp.solve() to find where the first derivative equations are zero
• Ignore any answers with imaginary numbers
• It is okay to get more than one critical point!
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You Try
5 Classify them as global/local/max/min using 𝐷

• If you have more than one critical point, you will have to calculate
𝐷 separately for each one

• Remember to plug the critical point into your derivatives
dxx = diff(f,x,x) # Take the derivaitve
dxx.subs({x:0,y:0}) # Plug in x=0 AND y=0

• Then plug those values into 𝐷
6 Find the value of your function at the critical point - sub in the

critical point
z.subs({x:0,y:0})

7 Interpret your results

You can see my solutions in the lecture notes


