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Today's Goals:

® [ntroduction to Probability Distributions.
® Binomial Distribution
® Beta Distribution



(Review) Probability

We express the idea of probability as

P(X)

where X is the event of interest.



(Review) Conditional Probabilities

P(A given B) = P(A|B)

Pop Quiz

1 What does the conditional probability calculate - give an example
(eg we did cancer and coffee)

2 What is the difference between independent and dependent events
in probability?



(Review) Conditional Probabilities

Joint Probability

P(A and B) = P(B) x P(A|B)

Pop Quiz

1 What is this formula used to calculate - say in your own words.
2 How does this formula change if A and B are independent events?



(Review) Conditional Probabilities

Union Probability.

P(Aor B) = P(A) + P(B) — P(B) x P(A|B))

Pop Quiz

1 What is this formula used to calculate - say in your own words.
2 Why do we subtract off the Joint Probability?
3 How does this formula change if A and B are independent events?



(Review) Bayes’ Theorem

P(B|A)P(A) P(A)

_ P4)

P(A|B) = (5

Pop Quiz

1 What does Bayes' Theorem do for our conditional probabilities?
2 If event A is your team winning the Champions League and event
B is your team scoring an average of 2.5 points per game. What

does P(B|A) mean in words and what does Bayes theorem let you
do?



Probability Distributions

A probability distribution is a mathematical function that gives the
probabilities of events occurring for a range of possible event outcomes.
Instead of being able to represent mathematically a single event (the
probability of rolling a 6 on a fair die) we can think about representing

all possible events (the probability of rolling a 1,2,3,4,5,6 on a fair die)
using a single function or graph.



Probability Distributions

Probability distributions can be defined in different ways and for
discrete or for continuous variables.

discrete only specific outcomes can occur: yes/no, heads/tails,
1/2/3/4/5/6, integer values.

continuous a continuous range of outcomes can occur: height, weight,
temperature, real values.



Probability Distributions

Distributions with special properties or for important applications are
given special names. We will discuss a few of these distributions that
are most important to data science and machine learning.



Binomial Distribution

The binomial distribution helps us model the probability that we would
have k successes given n independent trials.

Example Here is an example of the use of this idea: What is the

probability that we would get 5 heads if we flipped a fair coin 8 times
in a row.



Binomial Distribution

Assume we have n independent Bernoulli trials, where each trial has
a probability p of success. The probability of k successes is given by

n

Pix =) = () -t

where:
® 1 is the number of trials
® [ is the number of successes (0 < k < n)
® p is the probability of success in a single trial
[ ]

()

is the binomial coefficient, representing the number of ways to
choose k successes from n trials.



Binomial Distribution

Example Here is an example of the use of this idea: What is the
probability that we would get 5 heads if we flipped a fair coin 8 times
in a row.

An independent Bernoulli trial in this case is a single flip of the
coin. The characteristics of a Bernouli trial are:
® The events are independent - one flip of the coin does not effect
the next
® There are two possible outcomes - success or failure - heads or tails
® The probability of success remains constant - probability does not
change as we are doing the trials.

The number of trials we would do is n = 8 - we are flipping the
coin 8 times in a row

The number of successes we are looking for is k = 5 - probability
of getting 5 heads

The probability of success is p = 0.5 - 50% probability of flipping
heads



Binomial Distribution
Plugging into the formula would look like this:

Find the binomial coefficient will tell us the number of ways we can get
5 heads given that we flip the coin 8 times. We also say “8 choose 5":

8\ 8! 8k Tx6x5x4x3x2x1 _8*7*6_@_56
5/ 51(8—5)! (5*4x3%x2x1)(3x2x1) 3%2x1 6

Plug into the function:

P(X =5)= (i) (0.5)3(1 — 0.5)85 = 56(0.5)3(0.5)3 = 0.21875



Binomial Distribution

Some things to note:

® This formula takes advantage of the idea that if p is the
probability of success then 1 — p is the probability of failure.

® \We calculated the formula for just one example outcome.

® \We can ask Python to do this for us!



Binomial Distribution

o

1
oo

o

# Above we imported a new package for the binomial distributio
from scipy.stats import binom

# Then we will use the PMF function - Probability Mass Functic
# We need to send things in in the correct order!
binom.pnmf (k,n,p)

0.2187499999999999



Binomial Distribution

So we have a 21.87% chance of flipping heads five times out of a total
of 8 flips.



Binomial Distribution

How is this related to the Binomial Distribution. The probability
distribution is a plot/representation of all the possible outcomes or
events, so we would have to calculate all of these cases
k=0,1,2,3,4,5,6,7,8. This would result in a discrete probability
distribution.



n
p

Binomial Distribution
8 # Number of Trials
0.5 # Probability of Success

flip_binom = []
k_vals = []

for

plt

plt

plt.

k in range(n+1):
k_vals.append (k)

P = binom.pmf (k,n,p)
flip_binom.append(P)

print (f'k={k}: P&X={k})={P}")

.bar(k_vals,flip_binom)
plt.
plt.
.ylabel('Probability')

title('A Binomial Distribuion')
xlabel(f'k outcomes in n={n} trials')

show ()



Binomial Distribution

.003906250000000007
.031249999999999983
.10937500000000004
.21874999999999992
.27343749999999994
.2187499999999999
.10937500000000004
.031249999999999983
.00390625



Probability

Binomial Distribution

A Binomial Distribuion

0 2 4 6 8
k outcomes in n=8 trials



Interpret these Results

® The highest probability event is that we get 4 heads in 8 flips. It
has a probability of 27.34%.

® | owest probabilities are flipping either no heads or 8 heads in 8
flips. This makes sense.

® |f | add up all of the probabilities | should get 1. There is 100%
chance that | got one of these outcomes if | flipped a coin 8 times!

sum(flip_binom)
0.9999999999999998

Be aware of rounding and chopping errors when using computers
to do calculations



Binomial Distribution - Another Example

Adapted from our book: Essential Math for Data Science

Imagine that you are working on a new turbine jet engine and testing
the engine is very expensive! You want to run a limited number of tests
and hope to get at least a 90% success rate in your testing to prove
that your design is worth continued research. If you have less than 90%
success rates in your experiments then it is back to the drawing board
for a complete redesign.



Binomial Distribution - Another Example

Here are your results

Experiment Outcome

Pass
Pass
Pass
Pass
Pass
Fail

Pass
Fail

Pass
Pass

O 0O ~NO o1~ WwWN K+ O
© 0O ~NO O P~ WN -

—_
o




Binomial Distribution - Another Example

Just looking at this data - what does the likelihood say about your
marginal probability of success?

P(Pass) = 0.80

Now there are a few ways of thinking about this data:

1 We are only getting an 80% success rate, it is back to the drawing
board for us!

2 If we did just a few more experiments would would probably hit
our goal of 90% success.



Binomial Distribution - Another Example

What do you think? Did we do enough experiments? How many more
should we do?

The argument here is that if you flip a fair coin 10 times you will most
likely get 5 heads, but this is not a guarantee! You might get more or
fewer.

What we want to know here is if the underlying probability of
success really is 90% then what is the probability that we got 8
successes in 10 tries?



You Try - Binomial Distribution

1 Assuming we really do have an underlying 90% success rate,
calculate the probability that we see 8 successes in just 10 tests of
our engine. Use the Binomial PMF (probability mass function)

2 Find and plot the the Binomial Distribution for this example. We
have 10 trials and are assuming a probability of success of 90%.



Binomial Distribution - Another Example - Results

First we see that we have a 19.37% probability of seeing 8 successful
trials in 10 tries if we have an underlying success rate of 90%. It is
much less likely that we would have only 1 or 2 successes. In fact those
numbers are so small the are essentially zero!



Binomial Distribution - Another Example - Results

How could we calculate the probability that we had 8 or fewer
successes? This is like asking what is the probability that | had 0 or 1
or 2 or.... or 8 successes. | hope this sounds like a union probability!
We can add these up and we can't get both 0 and 1 so they are
independent.

So in our engine experiments there is actually at 26.39% chance that
we would see 8 or fewer successes in just 10 experiments even if we had
a 90% success rate for our engines. Maybe it is worth it to run a few
more experiments before scrapping our design!



Binomial Distribution - Another Example - Results

One big underlying assumption throughout this modeling process is
that the underlying success rate was actually 90%. As long as we are
clear about this assumption these results are still good. But it is worth
considering... what if our underlying probability of success were actually
different?



Beta Distribution

Continuing to think about the engine example above, how could | flip
my question around a bit to explore the fact that we might have a
different underlying probability of success? Instead lets ask

What other underlying rates of success might yield 8 successes in 10
trials



Beta Distribution

In this case we want to fix the success rate - what we saw
experimentally - and explore the probability of the underlying
probabilities. Now there are a few ways we could do this:

1 BRUTE FORCE - create a new binomial distribution for every

possible underlying probability and compare them. Wow this is a
lot of work!

2 MATH TO THE RESCUE - learn about the Beta Distribution -
which calculates the likelihood of different underlying probabilities.



Beta Distribution

| am lazy - I'll do math all day to avoid doing “real” work :)



Beta Distribution

The beta distribution is a continuous probability distribution.

The x-axis of the beta distribution goes from [0, 1] and represents
underlying rates of success between 0% and 100%.

It has two parameters, « (the number of successes) and 3 (the number
of failures).

Since beta is a continuous probability distribution we have to be a little
careful in how we interpret results.



Beta Distribution

Let's first look at a graph and talk about the ideas and then define the
function.

bet% Distribution with alpha=8 and beta=2
%]

Likelihiid of 8/10 succes

T T T T T
0.00 025 050 075 1.00
Underlying Rate of Success



What does the Beta Distribution tell us?

Now how can we interpret this to find results? Lets think about what
this function is telling us

The beta distribution gives us a probability density for each value of x
between 0.0 and 1.0.



What does the Beta Distribution tell us?

Can we plug in z values? Well, yes but what does this tell us?
prob_density = beta.pdf (0.9, alpha_val, beta_val)
print (prob_density)

3.4437376800000004

Okay at the exact point z = 0.9 we see we have a function height of
about 3.44%.

Does this mean that there is exactly a 3.44% chance that if | get 8/10
success then | had 90% as my underlying probability?

This is the same as asking if | randomly picked an underlying
probability from between 0 and 1 with this distribution, would | get
exactly 0.9 with a probability of 3.44%7?

NO THIS DOES NOT WORK



What does the Beta Distribution tell us?

What is going on here:

® |n the discrete, Binomial Distribution, case | could just plug in
k = 8 and get the probability for that case. A big difference here
is that there were only a discrete number of outcomes - think
marbles in a bag. So if | was picking randomly there really would
be a 19.37% chance of picking k = 8



What does the Beta Distribution tell us?

® |n the continuous case, Beta Distribution, | cannot just plug in
xz = 0.9. Why not? If | was picking randomly from a bag of
marbles in the continuous cases there would be an infinite number
of marbles in there!! The chance of actually getting exactly
x = 0.9 is zero - same as the probability of choosing exactly one
unique marble from an infinite number.



What does the Beta Distribution tell us?

® The continuous probability density function is more like a RATE
(probability per probability) so to get the probability we need to
integrate - or find the area under the curve.

The above calculation

ARFEA = BASE « HEIGHT = 0 % 3.4437376800000004 = 0

Okay, but if we can't just plug in - this is this thing worthless? NO -
what do we do when given a rate (density) and wanting to know the
value (area under curve)?



Calculus to the rescue!

The beta distribution is a probability distribution. This means that the
area under the whole curve must be equal to 1.0 or 100% (There is
100% chance that my underlying probability is between 0 and 100). To

find a specific probability we need to find the area under the curve
within a range.



Calculus to the rescue!

Here is some notation to support our discussion:

Assume that f(z,a, 8) is a beta distribution then:

1
/ f(x,a,B) dz =1
0



Calculus to the rescue!

If | wanted to know something like what is the probability that
x < 0.97 | would have to integrate:

0.9
P(X <0.9) = / flz, o, B) dx
0

What if | wanted to know what is the probability that = > 0.97

1 0.9
P09 = [ fwapdi=1- [ f@ap)ds
0.9 0



Calculus to the rescue!

Okay so we are throwing around some crazy notation here! What the
are those numbers on the integral sign?



Calculus to the rescue!

In our discussion of integration we talked only about integrals that
looked like this

/f(a:) de = F(z)+c

this is called in indefinte integral. We wanted a family of functions
that we could use for our analysis. But the whole idea is that the
integral was the area under the curve.



Calculus to the rescue!

If instead | write

/ab f(z) dx

this is putting limits of integration on my integral. This means we are
only interested in adding up the area under the curve between the
values of @ < & < b and since this is an exact area that | can color in..
the result is a number.



Plot P(X < 0.9)

bet% Distribution with alpha=8 and beta=2
%]

Likelihiid of 8/10 succes

T T T T T
0.00 025 050 075 1.00
Underlying Rate of Success



Plot P(X < 0.9)

bet% Distribution with alpha=8 and beta=2
%]

Likelihiid of 8/10 succes

T T T T T
0.00 025 050 075 1.00
Underlying Rate of Success



Cumulative Distribution Function

This area under the curve is represented by the cumulative distribution
function (CDF) the whole job of this function is to add up the area
under the curve between 0 and some value (adding up the probability
densities). Here is the official definition:



Cumulative Distribution Function
Mathematically, it is defined as:

Fla;a,f) = P(X < 2) = /0 @, a, B)dt

notice that it is always defined with the bottom limit being zero.

Luckily our scipy beta function already has this programmed for us!
alpha_val = 8

beta_val = 2

x_val = 0.9

# We use the beta.cdf() function to calculate the cumulative d
p = beta.cdf(x_val,alpha_val,beta_val)
print (p)



Cumulative Distribution Function

Interpret the results

This means that there is a 77.48% chance that the underlying
probability of success of our engine trials was less then 90% OR that
there was a 1-77.48% = 22.52% chance that the underlying probability
of success was greater than 90%.



Cumulative Distribution Function

So thinking back to our original experiment. The odds are not in our
favor. There is a higher chance that the underlying success rate is
lower than 90% and maybe we should cut our losses. But maybe our
CFO has a bit of funding to send our way.



You try

Imagine that you are an engineer on this problem and you just finished
doing more tests of the engine. You found that you had a total of 30
successes and 6 failures. Answer the following questions:

1 What is your new marginal probability of success?



You try

Binomial Distribution Questions

2 What is the probability that you got exactly 30 successes in 36
trials if you had an underlying success rate of 90%?

3 Plot the binomial distribution for these experiments.

4 What is the probability that we had 30 or fewer successes?

5 What is the probability that we had more than 30 successes?



You try

beta Distribution Questions

6 Plot the beta distribution for this example, here you have 30
successes and 6 failures.

7 Compare the shape of this beta distribution to the one we did
before.

8 What is the probability that our underlying success rate is 90% or
better?

9 What does this say about our doing more experiments - your
opinion backed by math.



You try

Challenge

10 Calculate the probability that your underlying success rate is
between 80% and 90%. HINT Use the cumulative distribution
function in python and think about the areas under the curve and
do some algebra to get the right area.



Extra - mathematical definition of the beta distribution
The beta probability density function (PDF) is given by:

2011 —2)8t

flz;o,8) = B, )

where:

o 0<x<1.

® « and 8 are parameters, with o > 0 and § > 0.

® B(a, ) is the beta function, which is a normalization constant
that ensures the total probability integrates to 1. It is defined as:

B(a, B) =/0 =11 — )P 1dt = m

® I'(2) is the gamma function, a generalization of the factorial



