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® Email: joanna_bieri@redlands.edu
® Office Hours take place in Duke 209 unless otherwise noted —
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Today's Goals:

® Normal Distribution
® Confidence Intervals
® Hypothesis Testing



(Review) Normal Distribution

norm.pdf() - to see the normal curve - bell shaped, symmetrical
np.mean() - to get the average of a set of numbers

np.std() - to get the standard deviation of a set of numbers
norm.cdf() - to get the cumulative distribution - integrate from 0
to xlim.

® norm.ppf() - to get the inverse cumulative distribution

The probability density function for the normal distribution is
given by




Uniformly Distributed Variables - Normal Results

Last time we did an experiment where we were rolling dice. We know
that each die has a uniform probability distribution. The chance of
getting each number is 1/6. But when we added up more than one die
being thrown, we saw something interesting happen. The sum of the
numbers rolled seemed to follow the pattern of a normal distribution!

Below we sample uniformly distributed random numbers but in sets of
31 and then sum them (averaging would work too) - We see the result
is a normal distribution!



Uniformly Distributed Variables - Normal Results

The mean is: 124.132
The standard deviation is: 10.99047660477015
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Inferential Statistics - Central Limit Theorem

Inferential statistics differs from descriptive statistics in that we hope to
go beyond describing the data. In this case we use sample data to
make inferences, predictions, and generalizations about a larger
population. In data science we start with descriptive statistics as part
of our exploratory data analysis (EDA), but in the longer term we hope
to go beyond this and create predictions about whatever system we are
considering.



Inferential Statistics - Central Limit Theorem

BEWARE We are wired as humans to be biased and come quickly to
conclusions, sometimes without considering all of the possible
interactions, influences, or nuances in the data. Being a great data
science professional means suppressing this desire to jump to
conclusions and carefully consider what the data can actually tell you.



The Central Limit Theorem

Interesting things happen when we take large enough samples of a
population, calculate the mean of each, and then plot the distribution.
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sample standard deviation =

The mean of the sample means is equal to the population mean.
If the population is normal, then the sample means will be normal.
If the population is not normal, but the sample size is greater than
30, the sample means will still roughly form a normal distribution.
The standard deviation of the sample means equals the population
standard deviation divided by the square root of the sample size.

population standard deviation

vsample size




The Central Limit Theorem

What does this do for us? We can now infer things about populations
based on samples - even if the underlying distribution is not normall!!!

The Central Limit Theorem tells us that even if we're dealing with a
weirdly shaped population, the averages we get from samples will
behave predictably and follow a normal distribution, given a large
enough sample size.

31 is a textbook number for when our sample distribution often
converges onto the population distribution. If you have fewer than 31
samples then you need to rely on a different distribution (the
T-distribution).



Confidence Intervals

Confidence intervals allow us to say how confidently we believe a
sample mean (or another parameter) falls in a range for a population
mean. How much do we believe the data for the sample is predictive of
the population.



Confidence Intervals

Remember:

® Sample - The data | collected. | try to get a good representative
sample, but usually | cannot get data for the WHOLE population.

® Population - The real world system. This is what | want to know
about based on the sample data | collected.



Confidence Intervals

Example: Golden Retrievers We looked at data about golden
retriever weights last class. Here is something we can say:

*Based on a sample of 31 golden retrievers with a sample mean of
65.405 and a standard deviation of 5.36, | am 95% confident that the
population mean lies between 63.92 and 66.89.

We will build up this argument/calculation in steps.



Confidence Intervals

The Golden Retriever Data:

T
50 55 80 85 70 73
Golden Retriever Weights

The average is: 65.405043722571
The standard deviation is: 5.3610122946938406



Level of Confidence (LOC)

We start by choosing how confident we need to be in our answer. This
level of confidence can depend on how much error tolerance you have

in real world system. 95% confidence is a good baseline - but this can
depend on your application.



/-scores

The Z-score has the following formula

where (1 is the sample mean and o is the standard deviation. This
variable can be used to rescale a given distribution into the standard
normal distribution (centered at 0 with a std of 1). This can help us
compare data from two different distributions.

Here we will use it to find boundaries!



Critical Z-value - Symmetrical Probability in the Center

It this case we are seeking a Critical Z-value - this gives us a
symmetrical range around the mean of our standard normal distribution
that matches the cutoff for 95% confidence. Lets look at a picture of
this!



Critical Z-value - Symmetrical Probability in the Center

confidence = .95

lower = (1-confidence)/2
upper = 1l-lower

a = norm.ppf (lower,0,1)
b = norm.ppf (upper,0,1)

Standard Normal Distribution with 0.95 percent confidence colored in.
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Critical Z-value - Symmetrical Probability in the Center
This gives us the boundary values of:

-1.959963984540054

1.959963984540054

This tells me that 95% of my probability is between
-1.959963984540054 and 1.959963984540054 for the standard normal
distribution. So our critical z-value is

2, = 1.959963984540054

Notice in the code, the edges of my confidence interval are the
x-locations given by the inverse cumulative distribution function at
locations p = .025 and p = .975 so that only 5% of the data is outside
this range - chopping off 2.5$ on each tail.



Margin of Error

So what we have so far is the cutoffs on the edge of the normal
distribution that serves as a boundary for 95% of our probability. The
margin of error formula is given by

o
E = —
j:zC\/ﬁ

here z, are the critical z-values found above, o is the standard
deviation, and n is the sample size.



Margin of Error

z_c = 1.959963984540054
sigma = np.std(golden_retriever_weights)
n = 50

E
5

z_c*sigma/np.sqrt(n)

1.4859694883203671



Margin of Error

Then we can apply this margin of error to the sample mean.

65.405043722571 + 1.4859694883203671
Or say that we are 95% certain that the average weight in our
population is between 63.92 and 66.89.

The student notebook has some code that will do the full calculation
for you!



You Try

Redo the example above except this time try a different LOC or
confidence interval. Try 99% and 75% confidence. Then interpret your
results. Do the ranges for the mean weight make sense?



P-values and Hypothesis Testing

When we say something is statistically significant, what the heck does
that even mean? The idea behind statistical significance is that we
want to know what is the probability that our results were random

chance vs what is the probability that there is some pattern or evidence
in our data. Here is the historical story:



P-values and Hypothesis Testing

In 1920s Cambridge, Muriel Bristol was a Botanist who claimed she
could discern whether milk or tea was poured first into a cup.
Statistician Ronald Fisher designed an experiment with eight
randomized cups, four of each type, to test her claim. Dr. Bristol was
able to identify all of them correctly. So Dr. Fisher asked “what is the
chance of this happening randomly”? It turns out it is a 1 in 70 chance,
or 1.4% probability that this result happened randomly rather than by
the hypothesized explanation (Hypothesis - Dr. Bristol really could tell
the difference). This is what we call the p-value.



P-values and Hypothesis Testing

Traditionally the threshold for statistical significance is a p-value of 5%.
How does this work:

1 Make your hypothesis (alternative hypothesis) (Dr. Bristol can tell
the difference - random luck did not play a significant role - the
variable in question is causing a positive result.)

2 Make your null-hypothesis (The results were random chance -
random luck played a role - something else is happening here - the
variable in question is not causing the positive result)

3 Find your p-value - if it is less then .05 we can reject the null
hypothesis.



Example

Past studies have shown that the mean recovery time for a cold is 18
days, with a standard deviation of 1.5 days, and that this follows a
normal distribution. This means that there is a 95% chance that
recovery will take between 15-21 days.

How was this calculated



Example

mean = 18
stdev = 1.5
upper = 21
lower = 15

x = norm.cdf (upper,mean,stdev) - norm.cdf (lower,mean,stdev)

print (f'Percent of the data between {upper} and {lower} is {x*

Percent of the data between 21 and 15 is 95.44997361036415Y,



Example

This also means there is less than a 2.5% chance of our recovery time
being outside this range!



Example

Let's say that you are experimenting on a new drug that was given to a
group of 40 people, and it took an average of 16 days for them to
recover from the cold. You want to know if the drug had an impact or
if you could have just randomly chosen really quick healing people.
Other ways to frame this question:

® Does the drug show a statistically significant results?
® \Was the 16 day average recovery just a coincidence?



Example

Null Hypothesis (Nothing is happening here) The 16 day average was
just a coincidence.

Alternative Hypothesis (Something is happening here) The drug did
have an effect.



One tailed test

Here we will frame our null and alternative hypothesis using
inequalities.

® The null hypothesis would say that the population mean is greater
than or equal to 18 (the number given in past studies).

® The alternative hypothesis would say the population mean is less
than 18.

To reject the null hypothesis we would need to show that the sample
mean of the test subjects was likely to have been random chance. We
will use the traditional p-value of 0.05 for our test.



One tailed test

Here is how we will do the test:

1 Ask what the cutoff is for statistical significance being careful to
take into account the sample size.

2 We will compare this to the mean that we found in our study and
evaluate the inequalities or check to see if our p-value is below 0.05



One tailed test
# Data from past studies
population_mean = 18
population_stdev = 1.5

# Data for our hypothesis test

p = 0.05

sample_mean = 16

sample_size = 32

SEM = population_stdev/np.sqrt(sample_size) # This is the Stan

# Get the z-value
z = (sample_mean-population_mean)/SEM
print (f'Our z-value is {z1}')

# Use the use the cumulative distribution function for the sta
# The probability of getting a z-score less than the one you g



One tailed test

What is the critical recovery time cutoff under which we would say that
the results are significant?

# This is the same as what we found above for the Error
# This is the negative side since p=0.05
z_c = norm.ppf(p,0,1)

# Find what recovery time matches this
X_c = population_mean + z_c*SEM

print(f'In this study with {sample_size} samples we would need

In this study with 32 samples we would need to see a mean reco



One tailed test

Our study mean was 16 which was smaller than 17.5638 so we reject
the null hypothesis.

Our p-value was nearly zero which is less than 0.05 so we reject the
null hypothesis.

The results of the p-test indicate that the new drug significantly
reduces the recovery time for people with a cold.



One tailed test

BEWARE The one tailed test only checks if our mean is below some
cutoff... so if our drug actually made things WORSE, our results would
be that the drug had no impact! This is why we almost always use the

two tailed test.



Two Tailed Test

In the above experiment we looked for significance in only one tail of
the distribution. It is usually better practice to look at a two-tailed test,
considering both tails of the distribution. Using the same data, we can
reframe our hypothesis in terms of equalities.

® The null hypothesis would say that the population mean is equal
to 18.

® The alternative hypothesis would say the population mean not
equal to 18.



Two Tailed Test

Here notice that instead of saying our drug has an impact in one
direction (it improves our mean recovery time) we are looking at
whether our drug had any effect at all (positive or negative). In this
case we are spreading our p-value into both tails of the distribution and
considering the area outside the central 95% of the normal distribution.



Two Tailed Test

Ask what the cutoff is for statistical significance being careful to
take into account the sample size - on the left tail (2.5%)

Ask what the cutoff is for statistical significance being careful to
take into account the sample size - on the right tail (97.5%)
Consider whether our results are outside of these ranges or
whether our p value is below 0.05.



Two Tailed Test

# THIS IS SLIGHTLY DIFFERENT!

# Use the use the cumulative distribution function for the sta
# The probability of getting a z-score less than the one you g
p_left = norm.cdf(z,0,1)

# The probability of getting a z-score greater than the one yo
p_right = 1-norm.cdf(-z,0,1)

p_value = p_right+p_left

# Compare the results
print(f'For our results to be statistically significant our p-

Our z-value is -7.542472332656508
For our results to be statistically significant our p-value: 4



Two Tailed Test

Again we see that our result is statistically significant, but our p value
is larger. This is because this test split the probability that we are
outside the 95% to both tails.

What are the critical x-values that we would need to be between to get
statistically significant results?



Two Tailed Test

# This is the same as what we found above for the Error

# This is the negative side since p=0.05

# We do p/2 because we are splitting the tails on either side
z_c = norm.ppf(p/2,0,1)

# Find what recovery time matches this

x_c_right = population_mean - z_c*SEM

x_c_left = population_mean + z_c*SEM

print(f'In this study with {sample_size} samples we would need

In this study with 32 samples we would need to see a mean reco

We see that our study mean was outside the cutoffs, so so our results
are statistically significant. This test would also tell us if the drug had
a negative effect!



Two Tailed Test

Notice The two tailed test sets a higher standard for statistical
significance. It makes it harder to reject the null. We also often care
about whether or not our mean was shifted in either direction. Two
tailed tests tend to be more reliable and are preferable in most cases.



Two Tailed Test

Beware of p-Hacking! P-hacking, or data dredging, is when
researchers manipulate their data or analysis to find a statistically
significant result (a low p-value) even if one doesn't truly exist. This
can involve things like stopping data collection early, removing outliers,
or trying many different analyses until a “significant” result appears.
While tempting, p-hacking leads to unreliable and often false
conclusions, undermining the integrity of scientific research.



You Try

Harvest Table claims their chocolate chip cookies have an average of
12 chocolate chips per cookie. You, being a dedicated cookie
connoisseur, suspect they're exaggerating! You decide to investigate.



You Try

Part 1: Sampling and the Normal Distribution

Sample Collection: You secretly purchase 50 cookies over a week and
count the number of chocolate chips in each. Here are your results:

(to, 12, 11, 12, 10, 11, 17, 15, 14, 13, 9, 10, 14, 14, 9, 9,

1 Calculate:
® Find the sample mean and sample standard deviation of your data.
® Assuming the population of chocolate chips per cookie is normally
distributed, plot a graph of the normal distribution using your
sample mean and standard deviation.



You Try

Part 2: Confidence Intervals

1 Calculate: Construct a 95% confidence interval for the sampled
average number of chocolate chips per cookie. You will need to
calculate the margin of error here.

2 Interpret: What does this confidence interval tell you?



You Try

Part 3: Hypothesis Testing and P-Values

1 Formulate:
® State the null hypothesis and alternative hypothesis.

2 Calculate:
® Find the p-value associated with your data. Do the two tailed test.

Here the SEM will use the sample standard deviation since we don't
have the population standard deviation.

3 Interpret:
® |f you're using a significance level of 0.05, do you reject or fail to

reject the null hypothesis?
® What does the p-value tell you about the strength of evidence

against the Harvest Table's claim?
® Write a short conclusion in the context of the cookie caper. Did the

Harvest Table exaggerate?



You Try

Bonus:

® Discuss potential sources of error in your sampling or analysis.
® \What would you do differently if you were to conduct this
experiment again?



