Math for Data Science

Introduction to Linear Algebra

Joanna Bieri DATA100

Important Information

® Email: joanna_bieri@redlands.edu
® Office Hours take place in Duke 209 unless otherwise noted —
Office Hours Schedule

mailto:joanna_bieri@redlands.edu
https://joannabieri.com/schedule.html

Today's Goals:

What is Linear Algebra

Vectors

Addition, Magnitude, Scalar Multiplication, Subtraction
K Nearest Neighbors - Machine Learning Classification

Linear Algebra

Linear algebra gives us a way to study linear systems. In my opinion
Linear Algebra is one of the most important mathematical topics you
can study to truly understand modern computation, data science, and
machine learning. It is a fundamental tool behind the “black box" of
many algorithms used in data science.

There are some scary terms used when talking about linear algebra:
Vector, Matrix, Tensor, Eigenvalue, Inverse, Span, Basis, etc. | hope
that by the end of this course these ideas feel more comfortable to you.

What is a Vector.

In the simplest words a vector is just an arrow in space with a specific
direction and length. In two dimensions it is given by two numbers

a and b are just numbers that tell me how far to go in each direction.
Vectors exist independently of a coordinate system, although we
imagine them with their tail at (0,0) and their point at (a,b)

Example:

What is a Vector.

Vector Plot

What is a Vector.

Here we can see that from (0,0) we go three steps in the x direction
and two steps in the y direction.

What is a Vector.

There are other ways to input a vector in Python:

® Use Numpy if you want to do numerical calculations

v = np.array([3,2])
print(v)

[3 2]

® Use Sympy if you want symbolic results.

= sp.Matrix([3,2])

B

You Try

Here are three more examples of vectors. First draw the vector by hand,
then compare what what you get by using the code below.

1

2 — -
L [-3
U—-Z-
3) - -
L[4
U—-_4-

Why are Vectors Useful?

A vector can represent many different things:

Navigation systems (GPS).
Robotics (path planning).
Physics (forces, velocities).
Game development.
Classification and Distances.
Abstract systems.

Why are Vectors Useful?

Say you have information about the square footage of a home and it's
sales price. We can put this information into a vector so that we can
more easily do operations on it.

® Square footage = 1500
® Price = 450000

. [1500
Y= 1450000

In fact the inputs into machine learning models are represented as
vectors.

Higher Dimensions

The beautiful thing about vectors is that you can develop intuition
about them in just 2-dimensions but the ideas work no matter how

many dimensions you have. We can still visualize three dimensions as
an arrow in three dimensional space:

4

This vector starts at (0,0) then you go 4 steps in the x direction, 1
step in the y direction and 2 steps in the z direction.

Higher Dimensions

In many machine learning examples you will have multiple input
features - columns in your data that you think help you predict
something important. You will often put these features into a vector

for each observation.

Adding Vectors

Adding vectors allows us to combine the movements of two vectors into
a single instruction. Let look at an example:

Adding Vectors

When you add vectors you add their components

en= [+ [2] -2 - [

Adding Vectors

Here is a picture of this

Vector Addition

2
\ . vl
// N, -2
 v] 4+ w2

\
\\

[5 1]

Adding Vectors

We can think about what this addition means by the fact that we can
get to the final location either by following the blue and then the green
vector OR by just following the red vector. The addition is combining
these steps into a single instruction.

Adding Vectors

Also, we could have done this in any order! We get the same result
V4+w=w+7v

Vector Addition

____IA)
LIV

I vl +v2
_ /7 vl + v

Adding Vectors

The code for adding vectors in numpy is

v = np.array([3,2])
w = np.array([2,-1])

v+w

array([5, 11)

Consider the vectors:

Find the following sums. First do the calculation and drawing by hand
then use the code below to check your answer.

1 U+
2 U+7v
3 UV+u+w

Magnitude and Direction of a Vector

The magnitude of a vector is a measure of it's length and it’s direction
is a measure of the angle between it and the z-axis. To get these
values we can use trigonometry!

Magnitude and Direction of a Vector

Magnitude - use Pythagorean Theorem

We know the bottom side is 3 units and the right side is 2 units so the
hypotenuse - or the length is

15]] = V32 + 22 = VO + 4 = V13

We can also use the python code

np.linalg.norm()

Magnitude and Direction of a Vector
Angle - use Tangent

We know that in a right triangle the tangent of the angle is the
opposite side over the adjacent side:

tan(0) = opp/adj

so for our vector

2
tan(@) = g

and solving for the angle

0 = arctan (3)) = tan (g)

Consider the vectors:

1 Find the magnitude of each vector write out the formula by hand.
You can use python to check your work, see the code below, but
you should draw the vector and write out the Pythagorean formula.

Scaling Vectors

Now that we can find the magnitude of a vector, we might want to
shrink or extend the vector, without changing the direction. This is
called scaling - or scalar multiplication

What is a scalar, this is just a number like we are use to. It has only a

single value.

Scaling Vectors

Example

then

\)
1

ol -l

In this case we multiply each component of the vector by the scalar.

Scaling Vectors
Here is a plot of this

Scalar Multiplication (5calar = 2)

.l ——
/ . kY
::'-12‘ /'/
0
T T T
0 2 4 6
x

array([6, 41)

Consider the vectors:

1 Find 49
2 Find —1w
3 Find

—

1
EU

4 Do the vectors change direction in any of these cases?

For each of these do the calculation by hand, draw the picture, and
then check vour results usine the code below.

K-nearest Neighbors Classifier

Here is a real world example where vectors are used in Data Science
and Machine Learning!

The K-Nearest Neighbors (K-NN) algorithm is a popular Machine
Learning algorithm used mostly for solving classification problems. It
uses a set of discrete steps to decide how to classify a test point based
on existing data.

K-nearest Neighbors Classifier

Given a new data point

1 Choose how many neighbors you want to use (K)

2 Calculate the distance between the new data point and all other
points in the data set. (vector magnitude).

3 Find the K nearest neighbors to the new data point based in the
distances.

4 Assign the new data entry to the class that is in the majority of
nearest neighbors. If there is a tie - come up with tie breaker rule!
Often we increase or decrease K.

Data

Let's say you gather the following data about a group of people

Sweetness Fruitiness Flavor

0 2 3 Vanilla
1 8 9 Strawberry
2 9 2 Chocolate
3 7 8 Strawberry
4 3 7 Vanilla
5 5 5 Vanilla
6 6 7 Strawberry
7 8 3 Chocolate
8 4 4 Vanilla
9 7 4 Chocolate

Fruitiness

K-nearest Neighbors Classifier

lce Cream Flavors

2 4 6

Sweetness

10

Vanilla
® Strawberry
@ Chocolate

K-nearest Neighbors Classifier

Now imagine that you have a new person that who has the data

query_vector = np.array([6, 6])

o | Sweetness| |6
1= | Fruitiness| ~ |6

Fruitiness

K-nearest Neighbors Classifier

lce Cream Flavors

10
L1
8 e
0
6 n
4 4 L
L1
2 s
0 T T T
0 4 6 8

Sweetness

10

Vanilla
Strawberry
Chocolate
Query Person

K-nearest Neighbors Classifier

1 We will choose K = 4 to start, but this is just a choice!
2 Calculate the distance between the new data point and all other
points in the data set. (vector magnitude).

Now in this case the distance between two points is the magnitude of
the vector between the two arrow points. To see how far apart my
query vector and another data vector are we can subtract them and
then find the magnitude

K-nearest Neighbors Classifier

G—d, =G+ (~d,) = [2] i [j] _ [

then find the magnitude

K-nearest Neighbors Classifier
Here is a picture of this subtraction

Vector Subtraction

64 - 1
/ -
4 / v -2
=23
-4 /

5.0

K-nearest Neighbors Classifier

But we would need to do this for every point!

[(5.
(3.
(5.
(2.
(3.
(1.
(1.
(3.
(2.
(2.

0, 'Vanilla'),

605551275463989, 'Strawberry'),
0, 'Chocolate'),
23606797749979, 'Strawberry'),
1622776601683795, 'Vanilla'),
4142135623730951, 'Vanilla'),
0, 'Strawberry'),
605551275463989, 'Chocolate'),
8284271247461903, 'Vanilla'),
23606797749979, 'Chocolate')]

K-nearest Neighbors Classifier

3 Get the K nearest points

[(1.0, 'Strawberry'),
(1.4142135623730951, 'Vanilla'),
(2.23606797749979, 'Chocolate'),
(2.23606797749979, 'Strawberry')]

It looks like we should suggest that this person tries Strawberry Ice
Cream!

KNN in Python!

Python Sklearn has a KNN function!

from sklearn.neighbors import KNeighborsClassifier

data = DF[['Sweetness', 'Fruitiness']].values
labels = list(DF['Flavor'])

knn_4 = KNeighborsClassifier(n_neighbors=4) # Update the numbe
knn_4.fit(data,labels)

KNeighborsClassifier(n_neighbors=4)

KNN in Python!

Use the model to make a prediction
query_vector = np.array([6,6])
query = query_vector.reshape(l, -1)
suggestion = knn_4.predict (query)
print (suggestion)

['Strawberry']

You can see that we got the prediction we expected! You can play
around with this code and see what happens for different queries.

You Try

Consider the video game data below. Imagine you survey 10 video
game enthusiast and ask them to say what kind of game they prefer
and rank the amount of action and story content they like to have in a
game. Now we are going to use this data to build a system that will
recommend a game type to a new player based on their scores for
action and story.

New player (query) vector:

. |Action| |6
1= Story | |4

You Try

Please do the following:

[I B O S

Choose one of the data vectors and write it down in vector form.
Find the vector that is difference between to two ¢ — data

Plot these vectors using the code below.

Find the distance between the two - magnitude of the difference.
Using Sklearn KNeighborsClassifier, build a KNN with K=3.
Predict the type of game your new player would want to play.

You Try

Amt Action Amt Story Type
0 3 9 RPG
1 9 4 Action
2 5 8 RPG
3 10 2 Action
4 6 7 RPG
5 2 6 RPG
6 9 3 Action
7 4 7 RPG
8 8 5 Action
9 7 3 Action

You Try

Video Games

12

RPG
® Action

