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Math for Data Science
Linear Algebra and Matrices

Joanna Bieri DATA100
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Important Information

• Email: joanna_bieri@redlands.edu
• Office Hours take place in Duke 209 unless otherwise noted –

Office Hours Schedule

mailto:joanna_bieri@redlands.edu
https://joannabieri.com/schedule.html
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Today’s Goals:

• Vectors continued
• Introducing Matrices
• Multiplication and Determinants
• Linear Programming
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Vectors.

In the simplest words a vector is just an arrow in space with a specific
direction and length. In two dimensions it is given by two numbers

⃗𝑣 = [𝑎
𝑏]
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Vectors Example:

⃗𝑣 = [3
2]

𝑤⃗ = [3
4]

• Addition add like components
• Magnitude use Pythagorean theorem
• Scalar Multiplication multiply all components by the scalar.
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Vectors Example:
Addition

array([6, 6])
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Vectors Example:
Magnitude

Magnitude: 3.605551275463989
Direction: 33.690067525979785 degrees
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Vectors Example:
Scalar Multiplication

array([0.75, 0.5 ])
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Span and Linear Dependence

Last time we learned that we can both add two vectors together and
multiply by a scalar. These two ideas actually give some interesting
results. Given two vectors we can create a any third vector we want!
(with some exceptions).

Let’s look at how this works:
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Span and Linear Dependence
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Span and Linear Dependence
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Span and Linear Dependence



.
.
.

.

.
.
.

.

Span and Linear Dependence
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Span and Linear Dependence
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Span and Linear Dependence
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Span and Linear Dependence

Notice how just by changing our scalar values we can reach any point
in the 𝑥𝑦 plane. Is this true of any two vectors? Did we just get luck
and pick special vectors?

Span of a set of vectors is the whole set of possible vectors that can be
created by taking a linear combination of the vectors in the set.
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Span and Linear Dependence

Above, given the set of vectors:

⃗𝑣 = [3
2]

𝑤⃗ = [3
4]

what is the set of other vectors that can be created using 𝑎 ⃗𝑣 + 𝑏𝑤⃗
where 𝑎 and 𝑏 can be any real number? In the case above the span is
the entire 2D plane.
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Span and Linear Dependence

Can we come up with an example where this fails?

⃗𝑣 = [3
2]

𝑤⃗ = [6
4]
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Span and Linear Dependence
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Span and Linear Dependence
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Span and Linear Dependence



.
.
.

.

.
.
.

.

Span and Linear Dependence
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Span and Linear Dependence
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Span and Linear Dependence
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Span and Linear Dependence

What happened here?

Because the two vectors in the original set with along the same line, we
are unable to get any points off the line using just 𝑎 ⃗𝑣 + 𝑏𝑤⃗. In math
this is called Linear Dependence
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Span and Linear Dependence

Two vectors are Linearly Independent if they do not lie along the
same line. We can tell if two vectors are linearly dependent because
one will be a scalar multiple of the other… they have different
magnitudes but the same direction.

𝑤⃗ = [6
4] = 2 ⃗𝑣 = 2 [3

2]
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You try
Which of the following vectors are linearly independent from ⃗𝑣

⃗𝑣 = [3
2]

1

⃗𝑤1 = [−3
2 ]

2

⃗𝑤2 = [3/2
1 ]

3

⃗𝑤3 = [0
1]
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Linear Transformations and Basis Vectors

The idea of adding up linear combinations of vectors turns out to be
REALLY IMPORTANT! This forms the logic behind linear
transformations. We can use linear transformations to reshape and
manipulate our data in ways that make predictions or patters much
more obvious!
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Linear Transformations and Basis Vectors

Basis Vectors

Basis vectors are the building blocks for transforming any vectors. They
are the simplest vectors from which all other vectors can be built.

̂𝑖 = [1
0]

̂𝑗 = [0
1]

These two vectors are perpendicular to each other and both have a
length of 1.
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Linear Transformations and Basis Vectors
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Linear Transformations and Basis Vectors

How can I create a new vector from these? Consider our good old
fashioned vector:

⃗𝑣 = [3
2]

I can write this as

⃗𝑣 = 3 ̂𝑖 + 2 ̂𝑗 = 3 [1
0] + 2 [0

1] = [3
0] + [0

2] = [3
2]

Writing it in this way also emphasizes the fact that we go 3 steps in the
𝑥 or ̂𝑖 direction and 2 steps in the 𝑦 or ̂𝑗 direction.
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You Try
Write each of the following vectors as a linear combination of basis
vectors:

̂𝑖 = [1
0] ̂𝑗 = [0

1]

1

⃗𝑤1 = [−3
2 ]

2

⃗𝑤2 = [3/2
1 ]

3

⃗𝑤3 = [0
1]
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Matrices and Matrix Multiplication

A matrix is an array of numbers that all go together into rows and
columns. For example we could have represented our basis vectors
above as a matrix:

𝑏𝑎𝑠𝑖𝑠 = [1 0
0 1]
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Matrices and Matrix Multiplication

In general a matrix can take any form and we usually use capital letters
as a variable:

𝐴 = [2 −1 0
0 5 4]

The dimensions of a matrix have to do with the number of rows and
columns. We would say the matrix above is a “two by three” or 2 × 3
matrix.
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Matrices and Matrix Multiplication

Most of the time in applied linear algebra we will be dealing with
square matrices - this just means it has the same number of rows and
columns.

𝑆 = ⎡⎢
⎣

4 2 7
5 1 9
4 0 1

⎤⎥
⎦

this is a “three by three” matrix.

We can define matrix transformations using a matrix multiplication!
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Matrices and Matrix Multiplication

Example

Let’s say that we start with our original vectors and we want to rotate
it 90 degrees.

⃗𝑣 = [3
2]

We can apply the matrix

𝐴 = [0 −1
1 0 ]
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Matrices and Matrix Multiplication

This means we have to learn to calculate

𝐴 ⋅ 𝑣 = [0 −1
1 0 ] [3

2]

This calculation is called a dot product and it is one form or matrix
multiplication. What do we have to do?
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Matrix Dot Product

[𝑎 𝑏
𝑐 𝑑] ⋅ [𝑥

𝑦] = [𝑎𝑥 + 𝑏𝑦
𝑐𝑥 + 𝑑𝑦]
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Matrix Dot Product

So in our example:

𝐴 ⋅ 𝑣 = [0 −1
1 0 ] [3

2] = [0 + −2
3 + 0 ] = [−2

3 ]
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Matrix Dot Product
Lets look at a plot of these - did I rotate by 90 degrees?
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Calculating a dot product in Numpy

1 Enter the vector
2 Enter the matrix
3 Use np.matmul() to do the dot product

Most common error - shape mismatch! “mismatch in its core
dimension” The inside dimensions must match when doing matrix dot
products. Above we are multiplying a 2 × 2 by a 2 × 1. The first
matrix has 2 columns to match up perfectly with the 2 rows of the
second matrix.
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Calculating a dot product in Numpy

# Enter the v vector
v = np.array([3,2])
# Enter the A matrix
A = np.array([[0,-1],[1,0]])
# Do the multiplication
v_new = np.matmul(A,v)
print(v,v_new)

[3 2] [-2 3]
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Calculating a dot product in Numpy

You can also use .dot() and @ (shorthand for matmul) to do the dot
product.
# Using the @ symbol
v_new_test = A@v
v_new_test

array([-2, 3])
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Bigger Matrix Multiplications

We can apply the dot product or matrix multiplication to bigger
matrices by following the same kind of pattern:

[𝑎 𝑏
𝑐 𝑑] [𝑒 𝑓

𝑔 ℎ] = [𝑎𝑒 + 𝑏𝑔 𝑎𝑓 + 𝑏ℎ
𝑐𝑒 + 𝑑𝑔 𝑐𝑓 + 𝑑ℎ]

notice how I am just doing the same thing… going across the rows of
the first matrix and down the columns of the second matrix.

We can think of doing bigger matrix multiplications as combining
transformations.
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You Try

Do the following matrix multiplications first by hand then check your
work with numpy.

1

[3 2
1 1] [−3

2 ]

2

[ 0 1
−1 0] [3/2

1 ]

3

[3 2
1 1] [ 0 1

−1 0]
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Where are we so far?

• We can define a vector
• We can use liner combinations of vectors to create new vectors
• We can do a matrix multiplication - dot product - which allows us

to transform our vectors.
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Matrix Identity

Whenever we are starting to do algebra with new objects it is important
to think about identity elements. These are special matrices that
although we do an operation, the result in unchanged. Think about
adding zero or multiplying by 1.
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Matrix Identity

For a matrix multiplying by 1 is multiplying by the identity matrix. In 2
dimensions this is given by

𝐼 = [1 0
0 1]

It always has ones along the diagonal and zeros everywhere else.
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Matrix Identity

Let’s see the idenity in action:

𝐼 ⋅ 𝑣 = [1 0
0 1] [3

2] = [3 + 0
0 + 2] = [3

2]

Multiplying by the identity gave us back our vector.
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Matrix Inverse

So how do we undo a transformation?

Above we found

𝐴 ⋅ ⃗𝑣 = [−2
3 ]

but what if we wanted to undo this multiplication, aka solve for ⃗𝑣.
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Matrix Inverse

Can we just divide?

⃗𝑣 =
[−2

3 ]

𝐴 =
[−2

3 ]

[0 −1
1 0 ]

= 𝑛𝑜𝑛𝑠𝑒𝑛𝑠𝑒
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Matrix Inverse

NO we cannot just divide by a matrix! With scalar values the inverse of
multiplication is division:

𝑎𝑥 = 𝑏 → 𝑥 = 𝑏
𝑎

When we are dealing with a matrix we need to find the matrix inverse:
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Matrix Inverse
When we are dealing with a matrix we need to find the matrix inverse:

𝐴 ⃗𝑣 = 𝑏⃗

𝐴−1𝐴 ⃗𝑣 = 𝐴−1𝑏⃗

⃗𝑣 = 𝐴−1 ⃗𝑏

𝐴−1 is called the inverse of 𝐴. One property of the inverse is that

𝐴−1𝐴 = 𝐼



.
.
.

.

.
.
.

.

Matrix Inverse

It is possible to find the inverse by hand, but we wont do that in this
class. We will use numpy.
A = np.array([[0,-1],[1,0]])
np.linalg.inv(A)

array([[ 0., 1.],
[-1., -0.]])
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Matrix Inverse

Let’s see if we get the identity if we multiply the inverse and A
np.linalg.inv(A)@A

array([[1., 0.],
[0., 1.]])

Let’s see if we get back our ⃗𝑣 if we multiply our ⃗𝑣𝑛𝑒𝑤 and the
inverse.
np.linalg.inv(A)@v_new

array([3., 2.])
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Solving Systems of Equations

You can use the tools we have developed to solve systems of linear
equations. Let’s look at this using an example.

Example 1

Say you want to solve for 𝑥 and 𝑦:

4𝑥 + 2𝑦 = 1
3𝑥 − 𝑦 = 2
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Solving Systems of Equations

You probably can solve this with techniques learned in college algebra:

1 Sove the bottom equation for 𝑦

𝑦 = 3𝑥 − 2

2 Sub this into the top equation

4𝑥 + 2(3𝑥 − 2) = 1
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Solving Systems of Equations

3 Solve for 𝑥

𝑥 = 1
2

4 Plug this in to solve for 𝑦

𝑦 = −1
2

And this process, while a bit boring, is fine, until you want to solve lots
of them or solve even bigger systems!
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Solving Systems of Equations

Let’s do this the linear algebra way:

1 Write the equations in matrix form 𝐴 ⃗𝑥 = ⃗𝑏

let ⃗𝑥 = [𝑥
𝑦]

then we can write the equation

𝐴 ⃗𝑥 = [4 2
3 −1] [𝑥

𝑦] = [1
2] = 𝑏⃗
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Solving Systems of Equations

2 Solve using the matrix inverse:

if 𝐴 ⃗𝑥 = ⃗𝑏 then ⃗𝑥 = 𝐴−1𝑏⃗
A = np.array([[4,2],[3,-1]])
b = np.array([1,2])

x = np.linalg.inv(A)@b
x

array([ 0.5, -0.5])

We get the same result! 𝑥 = 1
2 and 𝑦 = −1

2 . The order matters here.
Since x was in the top and y in the bottom we read the result in that
order.
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Solving Systems of Equations

Example 2

Say you want to solve for 𝑥, 𝑦, and 𝑧:

4𝑥 + 2𝑦 + 4𝑧 = 44
5𝑥 + 3𝑦 + 7𝑧 = 56
9𝑥 + 3𝑦 + 6𝑧 = 72
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Solving Systems of Equations

1 Write the system in matrix form

let ⃗𝑥 = ⎡⎢
⎣

𝑥
𝑦
𝑧
⎤⎥
⎦

⎡⎢
⎣

4 2 4
5 3 7
9 3 6

⎤⎥
⎦

⎡⎢
⎣

𝑥
𝑦
𝑧
⎤⎥
⎦

= ⎡⎢
⎣

44
56
72

⎤⎥
⎦
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Solving Systems of Equations

2 Solve using the matrix inverse:
A = np.array([[4,2,4],[5,3,7],[9,3,6]])
b = np.array([44,56,72])

x = np.linalg.inv(A)@b
x

array([ 2., 34., -8.])

So we find that 𝑥 = 2, 𝑦 = 34 and 𝑧 = −8. This is already WAY easier
that doing all the substitutions!
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A Brief Introduction to Linear Programming

Linear programming is a technique that every data science professional
should be familiar with. This is a great old school method for
optimizing systems subject to constraints. We will explore these ideas
using an example.
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A Brief Introduction to Linear Programming

Imagine that you own a company with two lines of products: the iPac
and the iPac Ultra (iPacU). The iPac makes \$200 profit while the
iPacU makes \$300 profit.

The assembly line one which these products are made can work for only
20 hours a day, and it takes 1 hours to make the iPac and 3 hours to
make the iPacU.

Also, on the supply side only 45 production kits can be provided each
day and it takes 6 kits to make an iPac with the iPacU requires 2 kits.

You always sell out of your supply, but the big question is how much of
each product should we sell to maximize our profit?
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A Brief Introduction to Linear Programming

The first constraint in this system is the time - the fact that our
assembly line can only run for 20 hours per day and it takes 1 hour to
make iPac and 3 to make iPacU. Of course you would make more profit
if you could run the factory for longer or make the products quicker.
We can express this mathematically:

𝑥 + 3𝑦 ≤ 20

where we will let x represent the iPac and y represent the iPacU. This
equation adds up the total number of hours we will spend making the
products. Note that both 𝑥 and 𝑦 must be positive.
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A Brief Introduction to Linear Programming

The second constraint in this system is supplies - the fact that we can
only access 45 kits in a day and we need 6 to make the iPac and 2 to
make the iPacU. Mathematically we can write:

6𝑥 + 2𝑦 ≤ 45
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A Brief Introduction to Linear Programming
The dark purple is the feasible region meaning that this is where the
constraints are met.

Figure 1: Feasible Region
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A Brief Introduction to Linear Programming

Next we want to maximize our profit. Mathematically:

𝑍 = 200𝑥 + 300𝑦

So we are searching for a 𝑍 value that makes this line as far away from
zero as possible.
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A Brief Introduction to Linear Programming
Here is a graph of a few 𝑍 values:

Figure 2: INEQ Image

You can see that as we increase 𝑍 we get closer and closer to the point
(corner) of the feasible region. Depending on the function we want to
maximize, we may have to check more than one corner. In this case we
can see what happens as 𝑍 increases.
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A Brief Introduction to Linear Programming

So what do we need to do? First we need to solve the inequalities for
where the maximum point is. Find the 𝑥 and 𝑦 values that solve:

𝑥 + 3𝑦 = 20
6𝑥 + 2𝑦 = 45

or

[1 3
6 2] [𝑥

𝑦] = [20
45]

we know how to do this!
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A Brief Introduction to Linear Programming
# Graph the constraint lines

# Get the x values
x = np.linspace(0,10,1000)

# Solve them for y
y1 = (20-x)/3
y2 = (45-6*x)/2

plt.plot(x,y1,'b')
plt.plot(x,y2,'r')
plt.grid()
plt.xlim(0,10)
plt.ylim(0,10)
plt.show()
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A Brief Introduction to Linear Programming
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A Brief Introduction to Linear Programming

Solve the system
A = np.array([[1,3],[6,2]])
b = np.array([20,45])

x = np.linalg.inv(A)@b
print(x)

Z = 200*x[0]+300*x[1]
print(Z)

[5.9375 4.6875]
2593.75
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A Brief Introduction to Linear Programming
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A Brief Introduction to Linear Programming

Interpret the results:

Our maximum profit will be \$2,593.75 when we make 5.9375 iPac and
4.6875 iPacU. Does it make sense to give numbers as decimals?
Sometimes yes, but in this case not really. So what do we do?
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A Brief Introduction to Linear Programming
We need to find the grid point closest to (5.9375, 4.6875) so we get
whole numbers.

Figure 3: INEQ Image
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A Brief Introduction to Linear Programming

Here we can see that the pint (5, 5) maximizes our profit while staying
on the boundary of the constraints AND being a whole number.
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A Brief Introduction to Linear Programming

NOTE you should check all possible intersection points. In this case
we could also check the profit for the points (0, 20/3) and (7.5, 0). In
the picture we can clearly see that we would have to move our profit
line down to reach these points.



.
.
.

.

.
.
.

.

You Try

Maria has an online shop where she sells hand made paintings and
cards.

It takes her 2 hours to complete 1 painting and 45 minutes to make a
single card. She also has a day job and makes paintings and cards in
her free time. She cannot spend more than 15 hours a week to make
paintings and cards. Additionally, she should make not more than 10
paintings and cards per week.

She makes a profit of \$25 on painting and \$15 on each card. How
many paintings and cards should she make each week to maximize her
profit.
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You Try
Let 𝑥 =painting and 𝑦=card

1 Write down a constraint on Maria’s time:

2 Write down a constraint on the number of objects Maria creates:

3 Write down the function for Maria’s profit - the thing you want to
maximize

4 Graph the constraint lines

5 Write the system in matrix form

6 Use numpy to solve for the intersection point.

7 Plot the intersection point and the profit line to show that you
have maximized the profit.

8 Interpret your results.


