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Today's Goals:

® Determinants
® Eigenvalues
® Applications



Vectors and Matrices (review)

Span of a set of vectors is the whole set of possible vectors that can be
created by taking a linear combination of the vectors in the set.

Two vectors are Linearly Independent if they do not lie along the
same line.

We can tell if two vectors are Linearly Dependent because one will be
a scalar multiple of the other.. they have different magnitudes but the
same direction.



Vectors and Matrices (review)

Matrix Dot Product

ol =)



Vectors and Matrices (review)

a blle f| _ |ae+bg af+Dbh
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Vectors and Matrices (review)

Using Numpy

v = np.array([3,2])

A = np.array([[0,-1],[1,0]11)
v_new = np.matmul (A,v)
print(v,v_new)



Vectors and Matrices (review)

Matrix Identity and Inverse

-0

ATA=T

np.linalg.inv(A)



Matrix Determinants

Remember from last time that we can use matrix multiplication to
transform a vector. When we preform these linear transformations we
often expand or squish our vector space. The amount of expansion or
squishing can be helpful to know.

The determinant measures something about the size of a
transformation. It measures how much a vector space changes when
you apply a transformation. Are we squishing the vectors, expanding
them, shearing them?

These also can be calculated by hand but we will use numpy in this
class.



Matrix Determinants

In two dimensions the determinant is give by

a b
[c d] =a*xd—bxc

We will consider the determinants of a few different matrices and see
how they correspond to the transformations they represent.



Matrix Determinants

Example 1

We will start by considering our basis vector and look at the are swept

out.
10
01



Matrix Determinants

Basis Vectors and Swept Area
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The area in red is 1.0 square units



Matrix Determinants

Here we see that the area in red is 1 square unit. What happens if we
apply a matrix multiplication?

FITEE



Matrix Determinants

Basis Vectors and Swept Area
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Matrix Determinants

Notice how the area changed. We expanded the length of both of our
vectors this also expanded the space. How much was the space
expanded?



Matrix Determinants

Determinant

Consider the determinant of the matrix that defined our transformation

3 0
[O 2} =3%x2—0%x0=6

Notice that this is the exact amount that we expanded our vector
space!



Matrix Determinants

Example 2
Should a simple rotation change the area? Let’s see

Consider the rotation matrix from last time

s



Matrix Determinants

Calculate the determinant by hand and compare to the numpy code
below

A = np.array([[0,-1],[1,0]11)
DET = np.linalg.det(A)
DET

1.0



Matrix Determinants

This tells me that the overall area should not change if we apply this
transformation. Let’s see this in practice.

IER;



Matrix Determinants
Basis Vectors and Swept Area
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The area in red is 6.0 square units

The area did not change, but it was rotated to a new location!



You Try:

Starting with the following matrix

b

For each matrix multiplication below:

Find the determinant of the transformation given
Say in words what will happen to the area

Do the matrix multiplication to the the new matrix
Use the code to plot the new matrix and area.






You Try:

kN
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You Try:

Basis Vectors and Swept Area
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Determinant of Linearly Dependent vectors
Consider the vectors:
1
1
4
4

First, how can you tell by looking that these vectors are linearly
dependent?



Determinant of Linearly Dependent vectors

Lets try to take the determinant of these two vectors:

1 4
[1 4} =1*%x4—1%x4=0

What does this mean?



Determinant of Linearly Dependent vectors

-



Determinant of Linearly Dependent vectors

Basis Vectors and Swept Area
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The area in red is 2.2204460492503135e-15 square units



Determinant of Linearly Dependent vectors

Whenever two vectors are linearly dependent the determinant is zero! If
we try to apply a transformation that has a zero determinant, the we

are reducing our space to a single line. The area between the vectors is
zero because they are on the same line!



Special Kinds of Matrices

Square

Equal number of rows and columns

4 2 4
5 3 7
9 3 6



Special Kinds of Matrices

Identity



Special Kinds of Matrices

Inverse
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Special Kinds of Matrices

Diagonal

A diagonal matrix has values only along the diagonal and zeros
everywhere else. Diagonal matrices are desirable in many
computational settings because simplify the calculations.

4 00
A=10 3 0
0 0 6



Special Kinds of Matrices

Triangular

Triangular matrices have non-zero values along the diagonal and
non-zero values either above or below the diagonal with only zeros on
the other side. They represent easy to solve systems and so are nice to
work with.



Special Kinds of Matrices

Upper Triangular




Special Kinds of Matrices

Lower Triangular




Special Kinds of Matrices

Sparse Matrix

A sparse matrix is one that contains mostly zeros. From a
computational standpoint the are very efficient since we don't have to
waste memory storing values that we know are zero.

0 0 4
A=10 0 0
0 00



Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors are an important idea in applied linear
algebral The allow us to find the growth or decay rates in linear
systems, construct solutions to systems, and to decompose matrices

into basic components.



Eigenvalues and Eigenvectors

Eigenvalues and vectors are defined by the following equation

Av =\

Where X is an eigenvalue and ¥ is an eigenvector. Notice what this
equation is saying: Given a matrix A we are looking for a pair ¥ and A
such that when we multiply Av we get back just a scalar multiple of v.



Eigenvalues and Eigenvectors

Let's see this in action! Consider the matrix

[t



Eigenvalues and Eigenvectors
we will use numpy to find eigenvalues

A = np.array([[1,2],[4,5]])
eigenvalues, eigenvectors = np.linalg.eig(A)

print ("EIGENVALUES")
print (eigenvalues)

print ("EIGENVECTORS")
print (eigenvectors)

EIGENVALUES

[-0.46410162 6.46410162]

EIGENVECTORS

[[-0.80689822 -0.34372377]
[ 0.59069049 -0.9390708 1]



Eigenvalues and Eigenvectors

Here we get two eigenvalues and two eigenvectors. THEY GO
TOGETHER so we have

A, = —0.4641016 &, = [—0.80689822]

0.59069049

Ay = 6.46410162 v, = [__063;339702730787]



Eigenvalues and Eigenvectors

Lets see what happens when we apply these to the equation that
defines our eigenvalues and vectors

eigv =np.array([-0.80689822,0.59069049] )
A = np.array([[1,2],[4,5]])

np.matmul (A,eigv)

array([ 0.37448276, -0.27414043])

lambl = -0.46410162
eigv =np.array([-0.80689822,0.59069049])
lambl*eigv

array([ 0.37448277, -0.27414041])



Matrix Decomposition

Now what we can find eigenvalues and eigenvectors we can actually
deconstruct A in an interesting way:

A=QAQ!

where () contains the eigenvectors and A has the eigenvalues on the
diagonal. This is like factoring a matrix to make it easier to deal with.



Matrix Decomposition

Let's look at these objects

# Construct Q
Q = eigenvectors

Q

array([[-0.80689822, -0.34372377],
[ 0.59069049, -0.9390708 11)



Matrix Decomposition

# Construct Lambda Matrix
Lambda = np.array([[eigenvalues[0],0], [0,eigenvalues[1]]1])
Lambda

array([[-0.46410162, O. 1,
[ 0. , 6.46410162]11)



Matrix Decomposition

# Find the inverse Q°-1
Qinv = np.linalg.inv(Q)
Qinv

array([[-0.97741588, 0.35775904],
[-0.61481016, -0.8398463 1]1)



Matrix Decomposition

And we can check that this actually works!
Q@Lambda@Qinv

array([[1., 2.],
(4., 5.11)



Summary

We now have the power to take determinants which help us test for
linear dependence and tell us about the size of the transformation that
we are applying to the vector space.

We can also find eigenvalues and eigenvectors and use these things to
decompose a matrix system.

What'’s next Now that we can calculate eigenvalues and eigenvectors
we can sue these ideas to reduce the dimensionality of data and to
transform our vectors space for better classification algorithms. This is
what we will do next time!



You Try

Here are a few different matrix problems for you to practice with:

1 Are the following two vectors linearly dependent? Use the

determinant test:
2 1
ol = M b2 = M

2 Are the following two vectors linearly dependent? Use the

determinant test:
1 1



You Try

3 Consider the transformation given by the matrix

1,2
vl = [2’ 6}
find the determinant and talk about the change in the area. Apply this
transformation to the basis:

and plot your results.



You Try

4 Use linear algebra to solve the system of equations for x,y, and z:

3xr+ 1y +0z=>54
20 + 4y 4+ 12 =12
3r+1y+82=6

you will first need to write the system in matrix form.



You Try

5 Consider the matrix

1 2
0 3
Find the eigenvalues and eigenvectors of this matrix. Write them as

pairs Ay, 07 and Ay, U5

6 Using the values you found in 5. write the system in decomposed
form

A=QAQ!
show values for Q, Q! and A.



