
.
.
.

.

.
.
.

.

Math for Data Science
Dimensionality Reduction

Joanna Bieri DATA100

.
.
.

.

.
.
.

.

Important Information

• Email: joanna_bieri@redlands.edu
• Office Hours take place in Duke 209 unless otherwise noted –

Office Hours Schedule

mailto:joanna_bieri@redlands.edu
https://joannabieri.com/schedule.html

.
.
.

.

.
.
.

.

Today’s Goals:

• Applications of Linear Algebra
• Dimensionality Reduction

.
.
.

.

.
.
.

.

Vectors and Matrices (review)

Span of a set of vectors is the whole set of possible vectors that can be
created by taking a linear combination of the vectors in the set.

Two vectors are Linearly Independent if they do not lie along the
same line.

We can tell if two vectors are Linearly Dependent because one will be
a scalar multiple of the other… they have different magnitudes but the
same direction.

.
.
.

.

.
.
.

.

Vectors and Matrices (review)

Matrix Dot Product

[𝑎 𝑏
𝑐 𝑑] ⋅ [𝑥

𝑦] = [𝑎𝑥 + 𝑏𝑦
𝑐𝑥 + 𝑑𝑦]

.
.
.

.

.
.
.

.

Vectors and Matrices (review)

[𝑎 𝑏
𝑐 𝑑] [𝑒 𝑓

𝑔 ℎ] = [𝑎𝑒 + 𝑏𝑔 𝑎𝑓 + 𝑏ℎ
𝑐𝑒 + 𝑑𝑔 𝑐𝑓 + 𝑑ℎ]

.
.
.

.

.
.
.

.

Vectors and Matrices (review)

Using Numpy

v = np.array([3,2])
A = np.array([[0,-1],[1,0]])
v_new = np.matmul(A,v)
print(v,v_new)

v_new = A @ v # Shortcut for matmul

.
.
.

.

.
.
.

.

Vectors and Matrices (review)

Matrix Identity and Inverse

𝐼 = [1 0
0 1]

𝐴−1𝐴 = 𝐼
np.linalg.inv(A)

.
.
.

.

.
.
.

.

Vectors and Matrices (review)

Matrix Determinants

The determinant measures something about the size of a
transformation.

In two dimensions the determinant is give by

[𝑎 𝑏
𝑐 𝑑] = 𝑎 ∗ 𝑑 − 𝑏 ∗ 𝑐

np.linalg.det()

.
.
.

.

.
.
.

.

Vectors and Matrices (review)

Eigenvalues and Eigenvectors

Eigenvalues and vectors are defined by the following equation

𝐴 ⃗𝑣 = 𝜆 ⃗𝑣
eigenvalues, eigenvectors = np.linalg.eig(A)

.
.
.

.

.
.
.

.

Dimensionality Reduction

Dimensionality reduction in data science is a set of techniques used to
reduce the number of features (or dimensions) in a dataset while
retaining its most important information.

.
.
.

.

.
.
.

.

Dimensionality Reduction

Often real world data has thousands or millions of features - think a
1000 dimensional vector - and we want to reduce this so that the very
complex data set is simplified in some way. BUT we don’t want to
loose the most important information!

.
.
.

.

.
.
.

.

Dimensionality Reduction

Dimensionality reduction can also be used to help with visualization of
the data and improving computational efficiency.

.
.
.

.

.
.
.

.

Principal Component Analysis

Principal component analysis (PCA) is the most popular dimensionality
reduction algorithms. The overall idea is the identify a hyperplane
(plane or line in lower dimensions) that lies closest to the data so that
we can project the data down onto that hyperplane. The whole
algorithm focuses on choosing the correct hyperplane for the projection.

.
.
.

.

.
.
.

.

Principal Component Analysis

Here are the basic steps of the algorithm:
• Center the Data
• Preserve the Variance
• Eigenvalue Decomposition
• Component Selection
• Projection

.
.
.

.

.
.
.

.

Principal Component Analysis

We will first go through a complete example to see how the linear
algebra works and then I will introduce you to the sklearn function that
does the PCA for us

.
.
.

.

.
.
.

.

Data

Here is a simple data set for us to use as an example

x-feature y-feature
0 1.0 2.0
1 1.5 1.8
2 5.0 8.0
3 8.0 8.0
4 1.0 0.6
5 9.0 11.0

.
.
.

.

.
.
.

.

Data

.
.
.

.

.
.
.

.

Data

Our data is two dimensional - there are two features labeled x-feature
and y-feature. Each observation can be represented as a vector of
length two

[1, 2]
[1.5, 1.8]
[5, 8]
[8, 8]
[1, 0.6]
[9, 11]

.
.
.

.

.
.
.

.

PCA

Now let’s say that we want to reduce this two dimensional data down
to a line (1D). But we don’t want to lose the clear separation between
the points.

.
.
.

.

.
.
.

.

PCA - Centering and Normalizing the data

PCA is very affected by the scale of the data and subtracting the mean
of each feature centers the data so that each feature has a mean of
zero.

.
.
.

.

.
.
.

.

PCA - Centering and Normalizing the data

It is also good practice in machine learning to restrict the magnitude of
your data to the range [−1, 1]. There is not one unique way to
normalize your data!

.
.
.

.

.
.
.

.

PCA - Centering and Normalizing the data

We will use

̄𝑥𝑖 = 𝑥𝑖 − 𝜇𝑥
𝜎𝑥

Notice that we are subtracting the mean and dividing by the standard
deviation. We apply this to each feature independently. This should
remind you of the 𝑧 score from probability!

.
.
.

.

.
.
.

.

PCA - Centering and Normalizing the data
xmean = DF['x-feature'].mean()
ymean = DF['y-feature'].mean()
xstdv = DF['x-feature'].std()
ystdv = DF['y-feature'].std()

DF['x-centered'] = (DF['x-feature']-xmean)/xstdv
DF['y-centered'] = (DF['y-feature']-ymean)/ystdv

x-feature y-feature x-centered y-centered
0 1.0 2.0 -0.895381 -0.752657
1 1.5 1.8 -0.757630 -0.799214
2 5.0 8.0 0.206626 0.644026
3 8.0 8.0 1.033132 0.644026
4 1.0 0.6 -0.895381 -1.078550
5 9.0 11.0 1.308634 1.342368

.
.
.

.

.
.
.

.

PCA - Preserve the Variance

Next we want to calculate the covariance matrix to capture how each
of the features in the data vary together. If the data set has n-features,
then the result of this will be an nXn square matrix.

We have calculated the covariance before using

np.cov()

.
.
.

.

.
.
.

.

PCA - Preserve the Variance

covariance_matrix = np.cov(DF['x-centered'],DF['y-centered'])

Then create a heatmap plot...

.
.
.

.

.
.
.

.

PCA - Preserve the Variance

.
.
.

.

.
.
.

.

PCA - Eigenvalue Decomposition

Next we want to use our covariance matrix and find the eigenvalues
and eigenvectors of this matrix.

𝐶𝑂𝑉 = [1. 0.96004897
0.96004897 1.]

.
.
.

.

.
.
.

.

PCA - Eigenvalue Decomposition

Eigenvectors indicate the directions of maximum variance in the data
(the principal components), while eigenvalues quantify the variance
captured by each principal component.

.
.
.

.

.
.
.

.

PCA - Eigenvalue Decomposition

eigenvalues, eigenvectors = np.linalg.eig(covariance_matrix)

print("EIGENVALUES")
print(eigenvalues)

print("EIGENVECTORS")
print(eigenvectors)

EIGENVALUES
[1.96004897 0.03995103]
EIGENVECTORS
[[0.70710678 -0.70710678]
[0.70710678 0.70710678]]

.
.
.

.

.
.
.

.

PCA - Eigenvalue Decomposition

.
.
.

.

.
.
.

.

PCA - Eigenvalue Decomposition

Here we see that one of the eigenvalues is MUCH bigger than the other!

𝜆1 = 1.96004897

⃗𝑣1 = [0.70710678
0.70710678]

.
.
.

.

.
.
.

.

PCA - Eigenvalue Decomposition

The blue eigenvector points in the direction with the most variance, the
green eigenvector points in the direction of the second most (in this
case the least) variance.

.
.
.

.

.
.
.

.

PCA - Component Selection

The eigenvalues tell us about the data’s variance the eigenvector tells
us the direction. We often make a bar plot of the eigenvalues in
descending order.

.
.
.

.

.
.
.

.

PCA - Component Selection

.
.
.

.

.
.
.

.

PCA - Component Selection

Looking at this bar plot we select the principal components with the
most variance. In this two dimensional case we will choose just PCA1,
and reduce our data down to one dimension.

In higher dimensional cases we can choose how many dimensions to
project down to by choosing the number of principal components.

.
.
.

.

.
.
.

.

PCA - Project the Data

We are ready to project the data using a matrix multiplication. To do
this we multiply the data vectors by the matrix of eigenvectors
corresponding to the principal components we choose.

⃗𝑥𝑝𝑟𝑜𝑗 = ⃗𝑥 ⋅ 𝑄̃

.
.
.

.

.
.
.

.

PCA - Project the Data

Since we are projecting into one dimension our projection matrix is
given by

𝑄̃ = [0.70710678
0.70710678]

.
.
.

.

.
.
.

.

PCA - Project the Data

So for the very first data point

⃗𝑥 = [1 2]

we first have to do the normalization, and then we can calculate the
projected point as

⃗𝑥𝑝𝑟𝑜𝑗 = [−0.89538136 −0.75265747] [0.70710678
0.70710678]

$$= -0.89538136*0.70710678+-0.75265747*0.70710678$$

$$= -1.1653394311885341$$

.
.
.

.

.
.
.

.

PCA - Project the Data

Do this same operation to each vector in our set of normalized
observations
observations = DF[['x-centered', 'y-centered']].values
observations

array([[-0.89538136, -0.75265747],
[-0.75763038, -0.7992136],
[0.20662647, 0.6440265],
[1.03313234, 0.6440265],
[-0.89538136, -1.0785504],
[1.3086343 , 1.34236848]])

.
.
.

.

.
.
.

.

PCA - Project the Data

x_proj = []
Q = np.array([0.70710678, 0.70710678])
for x in observations:

x_proj.append(x @ Q)

x_proj

[-1.1653394311885341,
-1.1008549371158458,
0.6015024779757782,
1.185930382924984,
-1.3957805284537876,
1.874542035857405]

.
.
.

.

.
.
.

.

PCA - Project the Data

Here you see that we preserved the idea that the points were clearly
separated in space even though we reduced the dimensions!

.
.
.

.

.
.
.

.

PCA - Summary

Principal component analysis leverages the eigenvalues and
eigenvectors of the covariance matrix to find directions along which we
can project our data to reduce the dimension.

.
.
.

.

.
.
.

.

PCA - Python Code - Automatic PCA

We can use tools from sklearn to automate this process!
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler

.
.
.

.

.
.
.

.

PCA - Python Code - Automatic PCA

• Reload the data to start from scratch
filename='https://joannabieri.com/mathdatascience/data/PCAsimple.csv'
DF = pd.read_csv(filename)

• Normalize the data
Z-score normalization
scalar = StandardScaler()
inputs = scalar.fit_transform(DF[features])

.
.
.

.

.
.
.

.

PCA - Python Code - Automatic PCA

• Create the model
x_proj = model.fit_transform(inputs)

• Find eigenvalues (fit) and project the data (transform)
x_proj = model.fit_transform(inputs)

• Plot the result

.
.
.

.

.
.
.

.

PCA - Python Code - Automatic PCA

.
.
.

.

.
.
.

.

PCA - Python Code - Automatic PCA
You can look at eigenvectors used
model.components_

array([[0.70710678, 0.70710678]])

You can see the eigenvalue
model.explained_variance_

array([2.35205876])

You can ask about how much variance is explained by the projected
data
model.explained_variance_ratio_

array([0.98002448])

.
.
.

.

.
.
.

.

Applied Example

Next we will consider a famous data set, the Diagnostic Wisconsin
Breast Cancer Database.

https://archive.ics.uci.edu/dataset/17/breast+cancer+wisconsin+diagnostic

In this data set is information about diagnostic images of breast masses
along with labels telling us if the mass was cancerous or not. It is a
famous data set used to learn about binary classification and PCA.

.
.
.

.

.
.
.

.

Load the data

mean radius mean texture mean perimeter mean area mean smoothness mean compactness mean concavity mean concave points mean symmetry mean fractal dimension ... worst texture worst perimeter worst area worst smoothness worst compactness worst concavity worst concave points worst symmetry worst fractal dimension malignant
0 17.99 10.38 122.80 1001.0 0.11840 0.27760 0.30010 0.14710 0.2419 0.07871 ... 17.33 184.60 2019.0 0.16220 0.66560 0.7119 0.2654 0.4601 0.11890 0
1 20.57 17.77 132.90 1326.0 0.08474 0.07864 0.08690 0.07017 0.1812 0.05667 ... 23.41 158.80 1956.0 0.12380 0.18660 0.2416 0.1860 0.2750 0.08902 0
2 19.69 21.25 130.00 1203.0 0.10960 0.15990 0.19740 0.12790 0.2069 0.05999 ... 25.53 152.50 1709.0 0.14440 0.42450 0.4504 0.2430 0.3613 0.08758 0
3 11.42 20.38 77.58 386.1 0.14250 0.28390 0.24140 0.10520 0.2597 0.09744 ... 26.50 98.87 567.7 0.20980 0.86630 0.6869 0.2575 0.6638 0.17300 0
4 20.29 14.34 135.10 1297.0 0.10030 0.13280 0.19800 0.10430 0.1809 0.05883 ... 16.67 152.20 1575.0 0.13740 0.20500 0.4000 0.1625 0.2364 0.07678 0
... ...
564 21.56 22.39 142.00 1479.0 0.11100 0.11590 0.24390 0.13890 0.1726 0.05623 ... 26.40 166.10 2027.0 0.14100 0.21130 0.4107 0.2216 0.2060 0.07115 0
565 20.13 28.25 131.20 1261.0 0.09780 0.10340 0.14400 0.09791 0.1752 0.05533 ... 38.25 155.00 1731.0 0.11660 0.19220 0.3215 0.1628 0.2572 0.06637 0
566 16.60 28.08 108.30 858.1 0.08455 0.10230 0.09251 0.05302 0.1590 0.05648 ... 34.12 126.70 1124.0 0.11390 0.30940 0.3403 0.1418 0.2218 0.07820 0
567 20.60 29.33 140.10 1265.0 0.11780 0.27700 0.35140 0.15200 0.2397 0.07016 ... 39.42 184.60 1821.0 0.16500 0.86810 0.9387 0.2650 0.4087 0.12400 0
568 7.76 24.54 47.92 181.0 0.05263 0.04362 0.00000 0.00000 0.1587 0.05884 ... 30.37 59.16 268.6 0.08996 0.06444 0.0000 0.0000 0.2871 0.07039 1

.
.
.

.

.
.
.

.

Load the data

This data has 30 features and 1 target. The features are the first 30
column labels and they include things like

'mean radius', 'mean texture', 'mean perimeter', 'mean area',
'mean smoothness', 'mean compactness', 'mean concavity',
'mean concave points', 'mean symmetry' ...

the target is a column with a 1 or 0 saying whether the doctor found
something that was malignant.

.
.
.

.

.
.
.

.

Visualization?

How can we visualize these numbers? Each observation (and there are
569 observations) consists of 30 features.

.
.
.

.

.
.
.

.

Visualization?
Look at just one observation

mean radius 17.990000
mean texture 10.380000
mean perimeter 122.800000
mean area 1001.000000
mean smoothness 0.118400
mean compactness 0.277600
mean concavity 0.300100
mean concave points 0.147100
mean symmetry 0.241900
mean fractal dimension 0.078710
radius error 1.095000
texture error 0.905300
perimeter error 8.589000
area error 153.400000
smoothness error 0.006399
compactness error 0.049040
concavity error 0.053730
concave points error 0.015870
symmetry error 0.030030
fractal dimension error 0.006193
worst radius 25.380000
worst texture 17.330000
worst perimeter 184.600000
worst area 2019.000000
worst smoothness 0.162200
worst compactness 0.665600
worst concavity 0.711900
worst concave points 0.265400
worst symmetry 0.460100
worst fractal dimension 0.118900
Name: 0, dtype: float64

.
.
.

.

.
.
.

.

Visualization?

This is why it is hard to visualize high dimensional data.

Is there something in the data (variance) that can tell me
something about whether or not we see cancer in a patient?

.
.
.

.

.
.
.

.

Visualization?

If we want to actually visualize on a graph this we need to reduce it to
3 or fewer dimensions. This is not always successful for visualization
even if PCA works. But it is usually worth a try!

.
.
.

.

.
.
.

.

Visualization?

Here is what we will do:

1 Take the features and normalize them
2 Run them through PCA and try to project them onto the 2d plane
3 Plot the resulting vectors (scatter plot)
4 The color the points by the label (malignant)
5 Ask if we see a pattern.

NOTE We don’t need any labels to be able to do PCA, we just add
them at the end to make our graph pretty!

.
.
.

.

.
.
.

.

PCA CODE

Look in the student notebook for the PCA code for this example!

.
.
.

.

.
.
.

.

Projection

.
.
.

.

.
.
.

.

Results

Lets look at the eigenvectors, what shape should they take?

.
.
.

.

.
.
.

.

Results

Eigenvalues:
[0.21890244370000278, 0.10372457821570166, 0.22753729300562497, 0.2209949853859397, 0.14258969436024088, 0.2392853539529943, 0.2584004812487666, 0.2608537583857381, 0.13816695930364045, 0.0643633463717741, 0.20597877585525437, 0.017428028148954108, 0.2113259163754939, 0.20286963544140427, 0.014531452147830873, 0.17039345120745547, 0.15358978973979215, 0.18341739696413573, 0.042498421633042884, 0.10256832209558289, 0.2279966342324755, 0.10446932545719613, 0.23663968074164696, 0.22487053273420826, 0.12795256119286477, 0.21009588015782346, 0.2287675328150073, 0.25088597121800116, 0.12290455637797504, 0.131783942877962]
[-0.23385713174765568, -0.05970608828045006, -0.21518136139490737, -0.23107671128277196, 0.18611302266359944, 0.1518916100911611, 0.06016536281254795, -0.03476750048720091, 0.19034877039713066, 0.3665754713792319, -0.10555215182884951, 0.08997968181919544, -0.08945723421956006, -0.15229262810396776, 0.20443045304782803, 0.2327158962000378, 0.19720728270592064, 0.13032155988956728, 0.1838479999334048, 0.2800920265952772, -0.21986637930803465, -0.04546729827559551, -0.1998784279455257, -0.21935185793017065, 0.1723043516361846, 0.14359317328188778, 0.0979641143418798, -0.00825723507946853, 0.14188334858599616, 0.2753394685719068]

.
.
.

.

.
.
.

.

Results

Let’s look at the explained variance. What do these numbers mean?

Explained Variance: [0.44272026 0.18971182]

.
.
.

.

.
.
.

.

Summary

After doing PCA, we see that when we project the data from 30
dimensions onto the 2D plane and the color by the label, there are two
fairly clear clusters that distinguish between malignant and not. This is
good news if we hope to create a binary classifier!

We have 2 eigenvectors each of lenth 30. The the variance that is
explained by the two principal components is
0.44272026 + 0.18971182 = 0.63243208, so more than 60% of the
variance in the data is described by these two components!

.
.
.

.

.
.
.

.

You Try

Our next very famous data set is the Iris data. This is a set of 150
observations of irises (flowers) along with measurements describing the
flower. There are three types of flowers in the data set that have been
assigned colors that you can use in the final graph:

• setosa = navy
• versicolor = turquoise
• virginica = darkorange

.
.
.

.

.
.
.

.

You Try

1 Load the data set and make a list of the features. How many
features are there? How many labels?

2 Alter the code that we used for the breast cancer data so that it
applies to the iris data (remember we changed the name DF –>
DF_iris). This should result in a plot of your features projected
onto the plane. You will need to change the color line to:

color = DF_iris['color']

3 Produce the explained variance ratio. What does this tell you?

4 Summarize what you find in your results.

.
.
.

.

.
.
.

.

You Try

sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) color
0 5.1 3.5 1.4 0.2 navy
1 4.9 3.0 1.4 0.2 navy
2 4.7 3.2 1.3 0.2 navy
3 4.6 3.1 1.5 0.2 navy
4 5.0 3.6 1.4 0.2 navy
...
145 6.7 3.0 5.2 2.3 darkorange
146 6.3 2.5 5.0 1.9 darkorange
147 6.5 3.0 5.2 2.0 darkorange
148 6.2 3.4 5.4 2.3 darkorange
149 5.9 3.0 5.1 1.8 darkorange

