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Math for Data Science
Variables and Functions

Joanna Bieri DATA100
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Today’s Goals:

• Deeper Thinking: What is a function? What is a variable?
• Overview: Types of Functions No BS Guide to Math and

Physics Functions Reference (p.63)
• Introduction to Empirical Modeling.
• Least Squares Regression
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What is a function?

Seriously… can you describe this idea.
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What is a function?

Give a specific example of a mathematical formula for a function.
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What is a function?

Can you give a general definition for a function?
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What is a function?

Definition: Function, Domain, and Range

Let 𝐴 and 𝐵 be two sets. A function 𝑓 from 𝐴 to 𝐵 is a relation
between 𝐴 and 𝐵 such that for each 𝑎 in 𝐴 there is one and only one
associated 𝑏 in B. The set 𝐴 is called the domain of the function, 𝐵 is
called its range.

Often a function is denoted as 𝑦 = 𝑓(𝑥) or simply 𝑓(𝑥).
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Common Function Types:

LINEAR
• Line

𝑦 = 𝑓(𝑥) = 𝑚𝑥 + 𝑏
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Common Function Types:

NON-LINEAR
• Square

𝑦 = 𝑓(𝑥) = 𝑎𝑥2 + 𝑏
• Square Root

𝑦 = 𝑓(𝑥) = 𝑎√𝑥 + 𝑏
• Absolute Value

𝑦 = 𝑓(𝑥) = 𝑎|𝑥| + 𝑏
• Polynomials higher than degree 1

𝑦 = 𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + …
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Common Function Types:

NON-LINEAR
• Sine

𝑦 = 𝑓(𝑥) = 𝑎 sin(𝑏𝑥) + 𝑐
• Cosine

𝑦 = 𝑓(𝑥) = 𝑎 cos(𝑏𝑥) + 𝑐
• Exponential

𝑦 = 𝑓(𝑥) = 𝑎𝑒𝑏𝑥 + 𝑐
• Natural Logarithm

𝑦 = 𝑓(𝑥) = 𝑎 ln 𝑏𝑥 + 𝑐
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Common Function Types:

Each of these basic types of functions allows for transformations. As
we choose different coefficients 𝑎, 𝑏, 𝑐, we can change the location and
some of the shape of the function. More complicated functions can be
build out of these basic function times. For example:

• Rational Functions
𝑦 = 𝑓(𝑥) = 𝑃(𝑥)

𝑄(𝑥)
where 𝑃(𝑥) and 𝑄(𝑥) are polynomials.
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Functions can have more than one variable!

In the examples above we see that our dependent variable 𝑦 is a
function of only one independent variable 𝑥. Sometimes we want our
functions to allow for more variables.

𝑦 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + …

In this example 𝛽𝑛 are all coefficients and 𝑋𝑛 are all variables. We can
have as many variables as we want!
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Why do we care?!?

Having a good instinct for functions is important when choosing
models in data science. We will explore these functions in the context
of Empirical Modeling. Here are just a few areas that rely on knowing
your functions:

• Predictive Modeling
• Feature Engineering
• Machine Learning - Cost Functions
• Data Visualization
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Empirical Modeling

Empirical Modeling is the are of establishing how one variable depends
on another using data. Sometimes, the goal of this type of modeling is
to fit a line or a curve though your data that will allow you to predict
results for instances where you do not have data. Other times, the goal
is just to establish that there is a dependence (correlation) between two
variables.

TODAY How do we actually fit a line through our data?
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Empirical Modeling

Last class we used the command
coefficients = np.polyfit(x, y, 1)

to get the coefficients of a degree one polynomial through our data
(line 𝑦 = 𝑎𝑥 + 𝑏). It is fine to take advantage of the power of Python,
but even better is to truly understand what these commands are doing.
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A discussion of Linear Dependence

What does it mean if we say data contains a linear dependence?

Consider the following three graphs

In which example would we say that 𝑦 is highly dependent on 𝑥? Why?

In which example would we say that 𝑦 does not seem to depend on 𝑥
at all? Why?
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A discussion of Linear Dependence
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A discussion of Linear Dependence
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A discussion of Linear Dependence



.
.
.

.

.
.
.

.

How can we MEASURE the degree of linear dependence
between two variables.

• It is fine to look at a graph and say - I SEE DEPENDENCE!
• it is a more convincing statement if you can measure that

dependence.
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Covariance

• Covariance measures how much two variables vary together.
• We will choose the average of the data ( ̄𝑥, ̄𝑦) as our reference.
• Then for each point in the data we can ask, how far away are you

in each direction from this average.

(𝑥𝑖 − ̄𝑥)
(𝑦𝑖 − ̄𝑦)
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Covariance - Example 2 - Very Linear
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Covariance - Example 2 - Very Linear
x y x-bar(x) y-bar(x) mult

0 0.00 0.00 -0.475 -0.475 0.225625
1 0.05 0.05 -0.425 -0.425 0.180625
2 0.10 0.10 -0.375 -0.375 0.140625
3 0.15 0.15 -0.325 -0.325 0.105625
4 0.20 0.20 -0.275 -0.275 0.075625
5 0.25 0.25 -0.225 -0.225 0.050625
6 0.30 0.30 -0.175 -0.175 0.030625
7 0.35 0.35 -0.125 -0.125 0.015625
8 0.40 0.40 -0.075 -0.075 0.005625
9 0.45 0.45 -0.025 -0.025 0.000625
10 0.50 0.50 0.025 0.025 0.000625
11 0.55 0.55 0.075 0.075 0.005625
12 0.60 0.60 0.125 0.125 0.015625
13 0.65 0.65 0.175 0.175 0.030625
14 0.70 0.70 0.225 0.225 0.050625
15 0.75 0.75 0.275 0.275 0.075625
16 0.80 0.80 0.325 0.325 0.105625
17 0.85 0.85 0.375 0.375 0.140625
18 0.90 0.90 0.425 0.425 0.180625
19 0.95 0.95 0.475 0.475 0.225625
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Covariance - Example 2 - Very Linear

When we multiply together

(𝑥𝑖 − ̄𝑥)(𝑦𝑖 − ̄𝑦)

we see we get all positive values and if we added these up we would get
an even more positive value!

1.6625
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Covariance - Example 1 - Random Data
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Covariance - Example 1 - Random Data
x y x-bar(x) y-bar(x) mult

0 0.742329 0.117742 0.301962 -0.383808 -0.115895
1 0.426917 0.384317 -0.013450 -0.117233 0.001577
2 0.040778 0.809669 -0.399589 0.308119 -0.123121
3 0.670480 0.295140 0.230113 -0.206410 -0.047498
4 0.537662 0.296514 0.097294 -0.205036 -0.019949
5 0.165276 0.728022 -0.275091 0.226472 -0.062300
6 0.539733 0.485549 0.099366 -0.016001 -0.001590
7 0.312388 0.852854 -0.127979 0.351304 -0.044960
8 0.282735 0.649146 -0.157632 0.147595 -0.023266
9 0.708921 0.846366 0.268554 0.344815 0.092602
10 0.761814 0.425291 0.321447 -0.076259 -0.024513
11 0.090757 0.399341 -0.349610 -0.102209 0.035733
12 0.153400 0.068035 -0.286967 -0.433516 0.124405
13 0.877155 0.258577 0.436788 -0.242973 -0.106128
14 0.032674 0.757723 -0.407694 0.256173 -0.104440
15 0.240421 0.500584 -0.199947 -0.000966 0.000193
16 0.358032 0.935058 -0.082335 0.433508 -0.035693
17 0.990282 0.147243 0.549915 -0.354307 -0.194838
18 0.118814 0.182102 -0.321554 -0.319448 0.102720
19 0.756776 0.891730 0.316409 0.390180 0.123456
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Covariance - Example 1 - Random Data

Now when we multiply together

(𝑥𝑖 − ̄𝑥)(𝑦𝑖 − ̄𝑦)

we see we get some positive and some negative values. These will
cancel each other out somewhat when we add them up.

-0.42350550332160514
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YOU TRY

Redo this experiment but now with a FOURTH example 𝑦 = −𝑥 to see
what happens when our straight line is decreasing slope.
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Sample Covariance Equation

̂𝐶𝑜𝑣(𝑥, 𝑦) = ∑𝑖(𝑥𝑖 − ̄𝑥)(𝑦𝑖 − ̄𝑦)
(𝑛 − 1)

where 𝑛 is the sample size. We divide by 𝑛 so that we are not biased
by the number of samples. (EG if we had a lot of positive samples this
might add up to a really big number only because of the number of
samples.)
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Sample Covariance Equation

• ̂𝐶𝑜𝑣(𝑥, 𝑦) is positive then as 𝑥 increases in general 𝑦 increases.
• ̂𝐶𝑜𝑣(𝑥, 𝑦) is negative then as 𝑥 increases in general 𝑦 decreases.
• ̂𝐶𝑜𝑣(𝑥, 𝑦) is zero then there is no indication of a linear

dependence.
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Sample Covariance Equation

Here are the results for our three examples:

Random
-0.022289763332716053

Linear
0.08750000000000001

Linear with some randomness
0.06882914052871991
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YOU TRY

Calculate the sample covariance for your FOURTH example 𝑦 = −𝑥
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Sample Correlation Coefficient 𝑟

In the examples here we see that all the numbers are similar because all
of the data for the experiments was between zero and one. If we are
comparing data sets with very different magnitudes, then we would
have to be careful.
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Sample Correlation Coefficient 𝑟

𝑟 =
̂𝐶𝑜𝑣(𝑥, 𝑦)
𝑠𝑥𝑠𝑦

where 𝑠𝑥 and 𝑠𝑦 are the standard deviations for our data in 𝑥 and 𝑦



.
.
.

.

.
.
.

.

Sample Correlation Coefficient 𝑟

Random
-0.2583898341930045

Linear
1.0

Linear with some Randomness
0.6876172920827351
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YOU TRY

Calculate the sample correlation for your FOURTH example 𝑦 = −𝑥
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Fitting a line to data – using least-squares.

If we were each asked to draw a straight line of best fit, what would
you do? Are there some rules you would try to follow? Can you even
describe all the things you are doing in your mind, behind the scenes as
you do this?
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Fitting a line to data – using least-squares.

The goal is to minimize the sum of square distances between the line
̂𝑦 = 𝛽0 + 𝛽1𝑥 and the data point values 𝑦. Lets look at this is parts:

1 What is the distance between 𝑦 and ̂𝑦 for each point in the data?

𝑦𝑖 − ̂𝑦𝑖 = 𝑦𝑖 − (𝛽0 + 𝛽1𝑥𝑖)

This is also called the residual or error for point 𝑖 in our data.
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Fitting a line to data – using least-squares.

2 What is the square distance?

(𝑦𝑖 − (𝛽0 + 𝛽1𝑥𝑖))2

We just square the residual or error for point 𝑖 in our data.
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Fitting a line to data – using least-squares.

3 How do we add these up?

Using the summation notation:

∑
𝑖

(𝑦𝑖 − (𝛽0 + 𝛽1𝑥𝑖))2

Now we are adding up the square error for all of the points in the data.
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Fitting a line to data – using least-squares.

4 How can we minimize this?

Well, we might have to wait until we get some calculus under our belt
before we can really see what the calculation does here. But this is a
quadratic equation for 𝛽0 and 𝛽1. We look for points on this surface
that minimize the sum of square errors.
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Fitting a line to data – using least-squares.
(0.152648555418422 − 𝑏0)2+(−𝑏0 − 0.6𝑏1 + 0.959221163487778)2+
(−𝑏0 − 0.5𝑏1 + 0.608535349889668)2 +
(−𝑏0 − 0.45𝑏1 + 0.614627161095876)2 +
(−𝑏0 − 0.35𝑏1 + 0.701728447520536)2 +
(−𝑏0 − 0.3𝑏1 + 0.916268826390829)2 +
(−𝑏0 − 0.15𝑏1 + 0.340109892676699)2 +
(−𝑏0 − 0.1𝑏1 + 0.185947932256662)2 +
(−𝑏0 − 0.05𝑏1 + 0.375015214863821)2 +
1.201219662406 (−0.912407368198695𝑏0 − 0.501824052509282𝑏1 + 1)2+
1.21462887098235 (−0.907357012650559𝑏0 − 0.181471402530112𝑏1 + 1)2+
1.50924349272702 (−0.813992388674826𝑏0 − 0.203498097168706𝑏1 + 1)2+
1.51495278163206 (−0.812457124823964𝑏0 − 0.324982849929585𝑏1 + 1)2+
1.54669992933502 (−0.804075754933938𝑏0 − 0.562853028453757𝑏1 + 1)2+
1.88875389054787 (−0.727632877428953𝑏0 − 0.582106301943162𝑏1 + 1)2+
2.29365165212913 (−0.660292356450288𝑏0 − 0.627277738627774𝑏1 + 1)2+
2.51572458869042 (−0.630475845459874𝑏0 − 0.409809299548918𝑏1 + 1)2+
2.78386749278817 (−0.599343390194836𝑏0 − 0.449507542646127𝑏1 + 1)2+
3.01044599690619 (−0.576347720066547𝑏0 − 0.489895562056565𝑏1 + 1)2+
3.15349531695421 (−0.563123828461826𝑏0 − 0.506811445615644𝑏1 + 1)2
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Fitting a line to data – using least-squares.
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Fitting a line to data – using least-squares.

If we solve (using calculus) we find that

𝛽1 = 𝑛 ∑𝑖 𝑥𝑖𝑦𝑖 − ∑𝑖 𝑥𝑖 ∑𝑖 𝑦𝑖
𝑛 ∑𝑖 𝑥2

𝑖 − (∑𝑖 𝑥𝑖)2)

𝛽0 = ̄𝑦 − 𝛽1 ̄𝑥

where ̄𝑥 and ̄𝑦 are the averages of the 𝑥𝑖 and 𝑦𝑖 data points
respectively. WHAT A MESS :)
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Python is Amazing – np.polyfit()

Luckily for us, we don’t have to do this calculation by hand. We can us
polyfit to get the line. Below we will have python calculate the
coefficients for us and then we will plot the resulting line.

BEWARE - np.polyfit() returns the coefficients in reverse order
[beta1,beta0]
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Python is Amazing – np.polyfit()

betas = np.polyfit(xdata,ydata,1)

xfit = xdata
yfit = betas[0]*xfit+betas[1]

plt.plot(xdata,ydata,'k.')
plt.plot(xfit,yfit,'b-')
plt.xlabel('x')
plt.ylabel('y')
plt.show()
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Python is Amazing – np.polyfit()
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PAUSE - What do we have so far?

• Covariance np.cov() will measure how much the points in a sample
data set vary together.

• Correlation np.corcoeff() gives us a coefficient to tell us how
correlated the data is - “normalizes” for the magnitude of the
numbers.

• We can find a line of best fit (Least Squares) np.polyfit(x,y,1)
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BUT How good is the fit?
Consider the picture below. Is the linear fit better in this case? Why?
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𝑅2 A measure of fit.

𝑅2 measures the amount of variation in the data that is explained by
the model. We can compare the model data (the line) and the sample
data (the points). Here are some things we might consider:
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How much of the variation in the data IS NOT described by
the model?

We can look at the distance between the line and each of the sample
points to see the error in the model or residual - aka Residual sum of
squares

𝑆𝑆𝑟𝑒𝑠 = ∑
𝑖

(𝑦𝑖 − ̂𝑦𝑖)2
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How much of the variation in the data IS described by the
model?

We can look at the difference between the line and the average (or
mean) of the data.

𝑆𝑆𝑟𝑒𝑔 = ∑
𝑖

( ̂𝑦𝑖 − ̄𝑦)2
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𝑅2 is defined as

𝑅2 = 𝑆𝑆𝑟𝑒𝑔
𝑆𝑆𝑟𝑒𝑔 + 𝑆𝑆𝑟𝑒𝑠

= 𝑆𝑆𝑟𝑒𝑔
𝑆𝑆𝑡𝑜𝑡𝑎𝑙

so 𝑅2 measures the ratio of the variation that is explained by the
model to the total variation in the data.

• if 𝑅2 = 0 then none of the data’s variation is explained by the
model.

• if 𝑅2 = 1 the all of the data’s variation is explained by the model.
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𝑅2 in Python

from sklearn.metrics import r2_score

# R^2 for the "messy" data
r2_score(ydata,yfit)

0.7095804639917491
# R^2 for the linear data
r2_score(y2,yfit2)

1.0
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Your Homework - Predict Viewership for the Show X-files

Below is some data for viewership of the TV show The X-files. It was
SUPER popular in the 90’s. The first few cells below gather the data
and plot it. You can just run these cells.

https://en.wikipedia.org/wiki/List_of_The_X-Files_episodes
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Please answer the following questions:
1 Does there seem to be a relationship between the week number

and the viewership?
2 What do the sample covariance and sample correlation tell you

about this data? Explain why your answer make sense.
3 Find a straight line that fits this data (Linear Regression).

• Write down the equation you found.
• Plot the linear fit and the original data on the same plot.
• How does it look?
• Based on your line what should viewership in the first week of the

third season be?
4 Calculate the 𝑅2 value and talk about what this means in terms of

your data and your linear fit.
EXTRA - Below I load data for season three of the series. How well
does your linear fit match season three. If you did a linear fit just on
season three would you have the same line or a different line? WHat
does the difference in these lines mean?f


