
.
.
.

.

.
.
.

.

Math for Data Science
Curvilinear Models and Summations

Joanna Bieri DATA100

.
.
.

.

.
.
.

.

Important Information

• Email: joanna_bieri@redlands.edu
• Office Hours take place in Duke 209 unless otherwise noted –

Office Hours Schedule

mailto:joanna_bieri@redlands.edu
https://joannabieri.com/schedule.html

.
.
.

.

.
.
.

.

Today’s Goals:

• Continue Empirical Modeling
• Cataloging Functions and Transformations.
• Nonlinear Models - Linearization
• Summation Notation

.
.
.

.

.
.
.

.

Empirical Modeling with Nonlinear Functions
• Square Root

𝑦 = 𝑓(𝑥) = 𝑎√𝑥 + 𝑏
• Absolute Value

𝑦 = 𝑓(𝑥) = 𝑎|𝑥| + 𝑏
• Polynomials higher than degree 1

𝑦 = 𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + …

• Sine
𝑦 = 𝑓(𝑥) = 𝑎 sin(𝑏𝑥) + 𝑐

• Cosine
𝑦 = 𝑓(𝑥) = 𝑎 cos(𝑏𝑥) + 𝑐

NOTE We will save Exponential and Logarithmic Functions for a day
of their own.

.
.
.

.

.
.
.

.

Exploring Nonlinear Curves

Powers of 𝑥
We will start by considering functions that are powers of 𝑥𝑛 where 𝑛
can be any real number, but typically we think of it as an integer
𝑛 = ±1, ±2, 𝑝𝑚3 or a fraction 𝑛 = 1

𝑚 where 𝑚 is an integer. This
includes the polynomials and square roots.

Here are our big questions:
• What does the power do to the shape of the function?
• How fast do these increase or decrease as 𝑥 gets large?
• How can we shift them: up, down, left, right?
• How can we stretch or compress them?

.
.
.

.

.
.
.

.

Exploring Nonlinear Curves

.
.
.

.

.
.
.

.

Exploring Nonlinear Curves

x = np.arange(0,4,0.01)
n = 1/2
f = x**n

plt.plot(x,f,color='red',label='x^1/2')
plt.legend()
plt.ylim(0,4)
plt.xlim(0,4)
plt.grid()
plt.show()

.
.
.

.

.
.
.

.

Exploring Nonlinear Curves

.
.
.

.

.
.
.

.

Transforming Powers of 𝑥

What we noticed about each of the funtions above:
• Increasing the power of the exponent in the polynomial changes

the shape.
• 𝑥 < 1 the functions slope (incline) decreases as 𝑥 increases.
• 𝑥 > 1 the functions slope (incline) increases as 𝑥 increases.
• As 𝑥 increases they all keep increasing.
• They all go through (0.0)

.
.
.

.

.
.
.

.

Transforming Powers of 𝑥

How could we change some of the shape given a single function? Lets
redo the plot of

𝑦 = √𝑥

that we did above, but transform it!

𝑦 = 𝑎
√

𝑥 − 𝑏 + 𝑐

Here 𝑎 will stretch or compress the curve, 𝑏 will shift the curve left or
right, and 𝑐 will move it up and down.

.
.
.

.

.
.
.

.

Transforming Powers of 𝑥
a=1
b=0
c=0

x = np.arange(0,4,0.01)
n = 1/2
f = a*(x-b)**n+c

plt.plot(x,f,color='red',label='x^1/2')
plt.legend()
plt.ylim(0,4)
plt.xlim(0,4)
plt.grid()
plt.show()

.
.
.

.

.
.
.

.

Transforming Powers of 𝑥

.
.
.

.

.
.
.

.

Transforming Powers of 𝑥
On paper:
Questions:

1 How would you create a square root function that “starts” at the
point (2, 3)?

2 Why does Python give you an error if you choose 𝑏 = 1 and have
your 𝑥-values going from (0, 4)?

3 How would you fit the following function:

𝑦 = 𝑎√𝑥 + 𝑐

so that it goes through the points (1, 0) and (4, 4)?

NOTE: It is interesting that in questions 3 we were solving a linear
system of equations even though we were fitting a nonlinear curve!

.
.
.

.

.
.
.

.

General Transformations

• If we know the graph of 𝑓(𝑥) then
• we can shift it to the right 𝑏 units by using 𝑓(𝑥 − 𝑏).
• we can stretch it vertically by multiplying by 𝑎 when 𝑎 > 1
• we can shrink it vertically by multiplying by 𝑎 when 𝑎 < 1
• we can move it up an down by adding 𝑐 to it.

.
.
.

.

.
.
.

.

Transforming Powers of 𝑥

One paper and in Python

Choose one of the other 𝑥𝑛 style functions and do the following:

1 Imagine what you want the graph to look like: shifted, stretched,
moved, etc…

2 Draw a rough sketch of what you think your new function will look
like.

3 Plot your function using Pyhton. How close was your sketch?

.
.
.

.

.
.
.

.

Integer Powers of 𝑥

.
.
.

.

.
.
.

.

Integer Powers of 𝑥

Positive 𝑛
Even Functions are functions that are equal when reflected across
𝑥 = 0. You could fold them in half along 𝑥 = 0 and they would
overlap.
Odd Functions are functions that are opposite when reflected across
𝑥 = 0. You could fold them in half along 𝑥 = 0 and they would NOT
overlap.

Questions:
1 Which of the functions above are even? Which are odd?
2 Do you see a pattern?

.
.
.

.

.
.
.

.

Integer Powers of 𝑥

.
.
.

.

.
.
.

.

Integer Powers of 𝑥

Negative 𝑛

Questions:
1 Can we talk about even and odd functions here?
2 What happens as 𝑥 gets really small?
3 What is happening across 𝑥 = 0?

.
.
.

.

.
.
.

.

Lets look at some data
Here is data that records the daily temperature and the number of
units of ice cream sold for that day.

Temperature (°C) Ice Cream Sales (units)
0 -4.662263 41.842986
1 -4.316559 34.661120
2 -4.213985 39.383001
3 -3.949661 37.539845
4 -3.578554 32.284531
5 -3.455712 30.001138
6 -3.108440 22.635401
7 -3.081303 25.365022
8 -2.672461 19.226970
9 -2.652287 20.279679

.
.
.

.

.
.
.

.

Lets look at some data

.
.
.

.

.
.
.

.

Lets look at some data

Questions:
After looking at the graph answer the following questions:

1 Can we use a linear regression?
2 Should we use a linear regression?
3 What function seems to kindof fit this data? Can you come up

with a guess of the function of best fit?

.
.
.

.

.
.
.

.

Lets try a linear regression (brute force)

Correlation:

-0.17518429270784366

Beta values

array([-0.79645711, 16.12174939])

.
.
.

.

.
.
.

.

Lets try a linear regression (brute force)

R squared:

0.030689536411547258

.
.
.

.

.
.
.

.

Lets try a linear regression (brute force)

It worked!!! BUT….

Questions:
1 Are we happy with this fit?
2 What do all those numbers/graphs mean to you?
3 What went wrong?

.
.
.

.

.
.
.

.

Nonlinear Models - Linearization

Even though the model above is nonlinear we can still technically use
linear regression. BUT HOW?

We think of linear regression in one variable (1D) as using just a
straight line:

𝑦 = 𝛽0 + 𝛽1𝑥

but what we have above is something more like

𝑦 = 𝛽0 + 𝛽1𝑥2

.
.
.

.

.
.
.

.

Nonlinear Models - Linearization
What if we just imagine that our data had another column that was
just the temperature squared:

Temperature (°C) Ice Cream Sales (units) Temperature Squared (°C^2)
0 -4.662263 41.842986 21.736693
1 -4.316559 34.661120 18.632685
2 -4.213985 39.383001 17.757668
3 -3.949661 37.539845 15.599823
4 -3.578554 32.284531 12.806047
5 -3.455712 30.001138 11.941943
6 -3.108440 22.635401 9.662400
7 -3.081303 25.365022 9.494430
8 -2.672461 19.226970 7.142047
9 -2.652287 20.279679 7.034625

.
.
.

.

.
.
.

.

Nonlinear Models - Linearization

Are 𝑦 and 𝑥2 correlated?
0.948267846768457

What does a scatter plot of 𝑦 vs 𝑥2 look like?

.
.
.

.

.
.
.

.

Nonlinear Models - Linearization

WOW! This looks almost linear… we could do a linear regression if we
just squared the temperature!!

.
.
.

.

.
.
.

.

Nonlinear Models - Linearization

The linearized model
So lets look at the nonlinear model:

𝑦 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥2

This thing is linear in 𝛽. Instead we could try to predict the Ice Cream
Sales using both the temperature and the temperature squared? Just
treat them each as separate variables (even though we secretly know
they are related). This would be more like

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2

.
.
.

.

.
.
.

.

Nonlinear Models - Linearization

We could “trick” linear regression into doing nonlinear regression! This
is what polyfit does when we tell it we want a second order polynomial.

{python] np.polyfit(x,y,2)

beta values

array([1.82952623, -0.82468167, 2.95177416])

.
.
.

.

.
.
.

.

Nonlinear Models - Linearization

0.9321137090423876

This is a much better result!

.
.
.

.

.
.
.

.

Pause for a second - Summation Notation
Often mathematicians try to write things down in beautiful and
compact notation. When we are doing general linear regression we
could have as many variables as we want (aka as many dimensions). It
gets really annoying to write out

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4𝑥4 + 𝛽5𝑥5 + …

Imagine if you had 100 variables! Summation notation makes this
much easier to write (okay a little harder to understand at first)

𝑦 = 𝛽0 +
100
∑
𝑖=1

𝛽1𝑥𝑖

This is how we might write out the idea of a polynomial regression:

𝑦 =
10

∑
𝑖=0

𝛽𝑖𝑥𝑖

.
.
.

.

.
.
.

.

Pause for a second - Summation Notation

Questions:
1 What is this sum if your write it out long hand?
2 Try writing out the terms in this sum

5
∑
𝑛=2

(−1)𝑛𝑥𝑛

3 Can you change this from long hand to summation notation?

𝑦 = 2 + 4𝑥 + 8𝑥2 + 16𝑥3 + 32𝑥4

We will see more of this as we go on in class… but I wanted to start
working in small doses!

.
.
.

.

.
.
.

.

Another measure of fit - Mean Squared Error
𝑅2 measures the proportion of the total variation in the data that the
model can explain. The values range from zero to one with higher
being netter.

𝑀𝑆𝐸 or mean squared error measures the average squared difference
between the predicted and actual values. Lower MSE values indicate
better prediction accuracy.

𝑀𝑆𝐸 = 1
𝑛

𝑛
∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)2

we saw this before! This is the residual sum of squares divided by the
number of data points.

10.003220594982494

.
.
.

.

.
.
.

.

Higher order Polynomials
Why stop at 𝑥2 we have a computer we can go crazy!!!!

R squared: 0.9367011897445384
MSE: 9.32724344567126

What you will notice here is that our method does get better as we
increase the order of our polynomial. Technically we could just draw a
curve that goes through all the points (aka memorize our data!)

.
.
.

.

.
.
.

.

Higher order Polynomials

Questions;
1 Rerun the code above for higher and higher order polynomials, do

the results get better?
2 Do you reach a point where making the model more complicated

doesn’t actually improve the results that much?

.
.
.

.

.
.
.

.

Higher order Polynomials
Occams Razor -
from Wikipedia:
In philosophy, Occam’s razor (also spelled Ockham’s razor or Ocham’s
razor; Latin: novacula Occami) is the problem-solving principle that
recommends searching for explanations constructed with the smallest
possible set of elements. It is also known as the principle of parsimony
or the law of parsimony (Latin: lex parsimoniae). Attributed to William
of Ockham, a 14th-century English philosopher and theologian, it is
frequently cited as Entia non sunt multiplicanda praeter necessitatem,
which translates as “Entities must not be multiplied beyond necessity”,
although Occam never used these exact words. Popularly, the principle
is sometimes paraphrased as “of two competing theories, the simpler
explanation of an entity is to be preferred.”

.
.
.

.

.
.
.

.

Higher order Polynomials

Occams Razor -
Our goal in modeling should be to increase the 𝑅2 value to be as close
as possible to 1 and decrease the mean squared error to as close as
possible to zero, without making our model ridiculously complicated.
Stop before you get diminishing returns!

.
.
.

.

.
.
.

.

Higher order Polynomials

.
.
.

.

.
.
.

.

Higher order Polynomials

.
.
.

.

.
.
.

.

What do we have so far?

• We can apply the ideas of linear regression to higher order
polynomials.

• Higher order will always give you lower MSE and 𝑅2 closer to 1.
• BUT we should not complicate our models more then necessary!

You Try
You should start working on Homework 2. Parts 1-4 have linear and
polynomial regression applied to vaccine data.

