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Math for Data Science
Continue Curvilinear Models

Joanna Bieri DATA100
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Important Information

• Email: joanna_bieri@redlands.edu
• Office Hours take place in Duke 209 unless otherwise noted –

Office Hours Schedule

mailto:joanna_bieri@redlands.edu
https://joannabieri.com/schedule.html
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Today’s Goals:

• Continue Empirical Modeling
• Nonlinear Models - Linearization
• Exponent and Log models
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Last Time - Polynomial Regression

We looked at the ice cream data and did a polynomial regression! We
wanted a quadratic function because of the shape of the data.

𝑦 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥2

This thing was linear in 𝛽. Instead we added 𝑥2 to data to our
regression as if it were just another data point.

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2
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Last Time - Polynomial Regression
We can “trick” linear regression into doing nonlinear regression! This is
what polyfit does when we tell it we want a second order polynomial.

{python] np.polyfit(x,y,2)

Temperature (°C) Ice Cream Sales (units)
0 -4.662263 41.842986
1 -4.316559 34.661120
2 -4.213985 39.383001
3 -3.949661 37.539845
4 -3.578554 32.284531
5 -3.455712 30.001138
6 -3.108440 22.635401
7 -3.081303 25.365022
8 -2.672461 19.226970
9 -2.652287 20.279679
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Higher order Polynomials
Why stop at 𝑥2 we have a computer we can go crazy!!!!

R squared: 0.9367011897445384
MSE: 9.32724344567126

What you will notice here is that our method does get better as we
increase the order of our polynomial. Technically we could just draw a
curve that goes through all the points (aka memorize our data!)
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Higher order Polynomials

Questions;
1 Rerun the code above for higher and higher order polynomials, do

the results get better?
2 Do you reach a point where making the model more complicated

doesn’t actually improve the results that much?
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Higher order Polynomials

Occams Razor
We want to increase the 𝑅2 value to be as close as possible to 1 and
decrease the mean squared error to as close as possible to zero,
without making our model ridiculously complicated. Stop before
you get diminishing returns!
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Higher order Polynomials
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Higher order Polynomials
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General Idea of Linearized Functions
We could imagine data that has all sorts of dependencies, curves, etc.
For example:

𝑦 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥2 + 𝛽3 sin(𝑥) + 𝛽4
√𝑥

as long as we can write the function linearly in beta

𝑦 = 𝛽0 + 𝛽1𝑓1(𝑥) + 𝛽2𝑓2(𝑥) + 𝛽3𝑓3(𝑥) + 𝛽4𝑓4(𝑥) …

we can do a linear regression!

BEWARE np.polyfit() can only deal with polynomials, not other more
complicated functions!

NOTE Not all functions can be linearized. We have to be able to write
it in the form above.
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Delhi Climate Data

Here we will look at some climate data and restrict ourselves to just
one year to see if we can model the yearly swing in temperature.

• First we will try a polynomial fit
• Then we will see how we could fit a sine function
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Delhi Climate Data
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Delhi Climate Data

Looking at this data it looks like 𝑦 = −𝑥2 (aka. upside down parabola)
that has been shifted and stretched to fit the year. We will assume we
can fit it with a function of the form:

𝑦 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥2

and just use np.polyfit(x,y,2)

array([-7.01158700e-04, 2.61972640e-01, 8.12191801e+00])
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Delhi Climate Data
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Delhi Climate Data

R squared:

0.8946935431841873

MSE:

5.765082904243028

This worked pretty well!
Polynomial was not our only choice! What if we tried another function?
Like sine or cosine?
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Using sin(x) to fit our data

What if we want to use 𝑦 = 𝛽0 + 𝛽1 sin(𝑥) as our nonlinear function
that will fit our data? How do we make this work?

First we need to get a better feel for the sine function!

𝑦 = 𝑎 sin(𝑏𝑥) + 𝑐
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Using sin(x) to fit our data
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Using sin(x) to fit our data

Questions:
1 Take a minute and play around with the function plotted above

what do 𝑎, 𝑏, and 𝑐 do?
2 How often does this function repeat?
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Using sin(x) to fit our data

How could we take a sine function and shift it to fit this data? We
need to make sure we get just one bump!
x_sin = x
y_sin = np.sin((np.pi/365) *x)
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Using sin(x) to fit our data
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Using sin(x) to fit our data

Now we have to do some of the hard work (feature engineering) before
we send our data to polyfit. In python we enter
np.sin(np.pi *x /365)

to convert our data from 𝑥 to our newly engineered data.

We could check to see if there is a correlation between our chosen
function of 𝑥 and the 𝑦 data.
np.corrcoef(xsin,y)[0,1]

0.942399024268974
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Using sin(x) to fit our data
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Using sin(x) to fit our data

If we do a linear regression with the new feature data we should get a
reasonable result.

𝑦 = 𝛽0 + 𝛽1 sin ( 𝜋𝑥
365) = 𝛽0 + 𝛽1𝑥1

betas:

array([22.6562821, 10.3681457])
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Using sin(x) to fit our data
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Using sin(x) to fit our data

R squared:

0.8881159209431134

MSE:

6.125179888598971
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Using sin(x) to fit our data

Both worked so which should we use.
Well Occams razor would say to use the simplest model that fits the
data. Which one is simpler?

Also, this is a bit of a contrived example because if we look at the data
over more years we actually see that neither of our models work very
well.
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Expanding our data:
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Expanding our data:
POLYFIT
𝑅2 for the polyfit
-13.02177521007198
MSE for the polyfit
222328.92193525183

SINE FUNCTION
𝑅2 for the sin function
-2738.8227158184377
MSE for the sine function
554.3635033352404

Large negative 𝑅2 values means that we did a HORRIBLE job of
fitting the data!
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You Try - Due next class
What function should we have tried here?
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You Try - Due next class

1 What function do you propose to really fit the data? HINT - just
apply another function to our sine function. There are multiple
things that will work better than what we did above!

2 Using your choice of function calculate the Correlation Coefficient.
3 Create a scatter plot of your function applied to the data (should

look kinda linear).
4 Do a linear regression with your function applied to the data.
5 Plot the regression vs the real data.
6 Calculate the 𝑅2 value.


