
.
.
.

.

.
.
.

.

Math for Data Science
Exponential and Logarithmic Models

Joanna Bieri DATA100

.
.
.

.

.
.
.

.

Important Information

• Email: joanna_bieri@redlands.edu
• Office Hours take place in Duke 209 unless otherwise noted –

Office Hours Schedule

mailto:joanna_bieri@redlands.edu
https://joannabieri.com/schedule.html

.
.
.

.

.
.
.

.

Today’s Goals:

• Continue Empirical Modeling
• Exponent and Log Functions
• The Logistic Function

.
.
.

.

.
.
.

.

Last Time - General Idea of Linearized Functions

We could imagine data that has all sorts of dependencies, curves, etc.
For example:

𝑦 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥2 + 𝛽3 sin(𝑥) + 𝛽4
√𝑥

as long as we can write the function linearly in beta

𝑦 = 𝛽0 + 𝛽1𝑓1(𝑥) + 𝛽2𝑓2(𝑥) + 𝛽3𝑓3(𝑥) + 𝛽4𝑓4(𝑥) …

we can do a linear regression!

Our function must be linearizable for this process to work!

.
.
.

.

.
.
.

.

Occams Razor

We want to increase the 𝑅2 value to be as close as possible to 1 and
decrease the mean squared error to as close as possible to zero,
without making our model ridiculously complicated. Stop before
you get diminishing returns!

This applies to how many degrees you use in polynomial regression, but
also to what functions you pick for fitting curvalinear or nonlinear
models!

.
.
.

.

.
.
.

.

Data - Covid-19

We will use a collection of data that comes from the 2019 Novel
Coronavirus COVID-19 Data Repository by Johns Hopkins CSSE. Here
is the link:

https://github.com/outbreak-info/JHU-CSSE

There is all sorts of information about how the data was collected and
what the variables mean, but basically it gives information about covid
deaths beween the dates of 1/22/20 and 3/9/23 that were reported by
200 countries and one report for the Winter Olympics 2022.

This lecture is inspired by:
https://www.architecture-performance.fr/ap_blog/fitting-a-logistic-
curve-to-time-series-in-python/

.
.
.

.

.
.
.

.

Focus on a single country

You are welcome to make changes to the country. To see all the
countries in the data you can run:
df['Country/Region'].unique()

Choose a country to focus on
country = 'Italy'
mask = df['Country/Region']==country
DF = df[mask]

.
.
.

.

.
.
.

.

Choose a specific date range

Choose the dates
start_date = datetime.date(2020,3,1)
end_date = datetime.date(2020,3,31)

Get the data for just those dates
mask = (DF['DateTime'] >= start_date)

& (DF['DateTime'] <= end_date)
DF_data = DF[mask].copy()

.
.
.

.

.
.
.

.

Look at the Data
Country/Region Deaths DateTime

39 Italy 34 2020-03-01
40 Italy 52 2020-03-02
41 Italy 79 2020-03-03
42 Italy 107 2020-03-04
43 Italy 148 2020-03-05
44 Italy 197 2020-03-06
45 Italy 233 2020-03-07
46 Italy 366 2020-03-08
47 Italy 463 2020-03-09
48 Italy 631 2020-03-10
49 Italy 827 2020-03-11
50 Italy 1016 2020-03-12
51 Italy 1266 2020-03-13
52 Italy 1441 2020-03-14
53 Italy 1809 2020-03-15
54 Italy 2158 2020-03-16
55 Italy 2503 2020-03-17
56 Italy 2978 2020-03-18
57 Italy 3405 2020-03-19
58 Italy 4032 2020-03-20
59 Italy 4825 2020-03-21
60 Italy 5476 2020-03-22
61 Italy 6077 2020-03-23
62 Italy 6820 2020-03-24
63 Italy 7503 2020-03-25
64 Italy 8215 2020-03-26
65 Italy 9134 2020-03-27
66 Italy 10023 2020-03-28
67 Italy 10779 2020-03-29
68 Italy 11591 2020-03-30
69 Italy 12428 2020-03-31

.
.
.

.

.
.
.

.

Make a Scatter Plot

.
.
.

.

.
.
.

.

What kinds of function fits do we think might work here?

What won’t work?

.
.
.

.

.
.
.

.

What kinds of function fits do we think might work here?
What won’t work?

Really we have lots of options:

1 Polynomial
2 Exponential
3 Other?

The first thing to try is usually just a linear or polynomial fit.

.
.
.

.

.
.
.

.

YOU TRY

Do a linear fit and choose the order of the polynomial.

Change the value of 𝑁 until you are happy with the fit. What are some
qualities of a good fit?

.
.
.

.

.
.
.

.

For me N=4 looks pretty good!

R squared: 0.999753235637563
MSE: 3724.392081340665

.
.
.

.

.
.
.

.

For me N=4 looks pretty good!

R squared: 0.999753235637563 MSE: 3724.392081340665

But is this a good function to use to predict future data? Lets predict
what will happen over more days and then compare to the data.

.
.
.

.

.
.
.

.

Predict the next months

.
.
.

.

.
.
.

.

Predict the next three months

Does this seem like a good prediction? What are the positives and
negatives? What happened? What kind of growth do we expect for
disease spread?

.
.
.

.

.
.
.

.

Exponential Functions

We usually expect things like disease to grow exponentially (at first?)
so maybe trying a fit with the exponential function will work.

𝑦 = 𝑓(𝑥) = 𝑎𝑒𝑏𝑥 + 𝑐

.
.
.

.

.
.
.

.

Exponential Functions

Let’s explore an exponential fit! Similar to what we did last time:

1 Take the exponent of the 𝑥 variable
2 Hopefully this looks linear-ish
3 If so, do a linear regression.

.
.
.

.

.
.
.

.

Exponential Functions

.
.
.

.

.
.
.

.

What goes wrong here? Shouldn’t this be linear if our
exponential fit works?

We need to transform our exponential function (aka play around with c
and b). If we keep 𝑐 = 0 then we would have:

𝑦 = 𝑎𝑒𝑏𝑥

Let’s explore what happens when we change the value of 𝑏.

.
.
.

.

.
.
.

.

Exponential Functions

When I pick b=1/10 it looks more linear. So maybe we can do linear
regression with:

𝑦 = 𝑎𝑒𝑥/10 + 𝑐

.
.
.

.

.
.
.

.

Exponential Functions

.
.
.

.

.
.
.

.

Exponential Functions - fit a curve - polyfit

R squared: 0.9921126255142356
MSE: 119043.42583038931

.
.
.

.

.
.
.

.

Predict the next month

.
.
.

.

.
.
.

.

Predict the next month

Does this seem like a good prediction? What are the positives and
negatives?

.
.
.

.

.
.
.

.

Natural Log!

We could have used our knowledge of math to figure what the value of
𝑏 is when 𝑐 = 0

ln(𝑦) = ln(𝑎𝑒𝑏𝑥) = ln(𝑎) + ln(𝑒𝑏𝑥) = ln(𝑎) + 𝑏𝑥 = 𝐴 + 𝑏𝑥

where 𝐴 = ln(𝑎). This is the equation for a straight line and 𝑏 is the
slope!

Lets plot 𝑥 vs ln(𝑦)

.
.
.

.

.
.
.

.

Plot of 𝑥 vs ln(𝑦)

.
.
.

.

.
.
.

.

What do we observe?

Well, it looks a little more linear, especially for day days 0-15. It starts
to curve back down for the later days.

The slope of this data could help us find our 𝑏 value above! But this
also gives us an indication that a pure exponential fit is maybe not the
best choice!
Here are our betas:
[0.18950162 4.42211045]
So an estimate of 𝑏 = 1/10 is within the range of what we found for 𝑏
in our linear fit of x and log(y).

.
.
.

.

.
.
.

.

How do our predictions so far match with the real data?

.
.
.

.

.
.
.

.

Take a closer look at the real data

.
.
.

.

.
.
.

.

Take a closer look at the real data

This data is only exponential at first. We can’t have exponential
growth forever when there are a limited number of people! We need a
better function to model this data if we want to predict past about the
first 10-20 days.

.
.
.

.

.
.
.

.

Logistic function:

A logistic curve is a common S-shaped curve [sigmoid curve]. It can be
useful for modeling many different phenomena, such as:

population growth tumor growth concentration of reactants and
products in autocatalytic reactions

.
.
.

.

.
.
.

.

Logistic function:

𝑦 = 𝑓(𝑥) = 𝐿
1 + 𝑒−𝑘(𝑥−𝑥0)

• 𝐿 is the carrying capacity, the supremum of the values of the
function;

• 𝑘 is the logistic growth rate, the steepness of the curve; and
• 𝑥0 is the value of the function’s midpoint.

.
.
.

.

.
.
.

.

Logistic function:

The Logistic Function is the solution to the Logistic Differential
Equation:

𝑑𝑓
𝑑𝑥 = 𝑘 (1 − 𝑓

𝐿) 𝑓

Once we learn about derivatives we can talk about why this equation
makes sense!

.
.
.

.

.
.
.

.

Logistic function:

YOU TRY: Let’s play around with this function a little bit and see
what happens.

.
.
.

.

.
.
.

.

Logistic function:

When 𝐿 = 1, 𝑘 = 1 and 𝑥0 = 0 this is called the “sigmoid fuction” -
used in machine learning and classification (Logistic Regression).

.
.
.

.

.
.
.

.

Logistic function:

How can we use this to fit our data?

Can we linearize this function?

We need a new bit of software since we can’t trick linear regression into
solving this one!

.
.
.

.

.
.
.

.

Curve_fit

The curve_fit() function assumes that we are looking for a function
that takes the form:

𝑦 = 𝛽0 + 𝑓(𝑥, ⃗𝛽)

in this case our function 𝑓 does not have to be linear in 𝛽. We still
minimize the square error between our given function and our data.
BUT - we are not guaranteed a solution for any choice of 𝑓 .

.
.
.

.

.
.
.

.

Curve_fit

curve_fit() takes three pieces of information

1 a function form for our 𝑓
2 x data
3 y data

.
.
.

.

.
.
.

.

Curve_fit

from scipy.optimize import curve_fit

Get our data
x = np.arange(0,len(DF_data))
y = np.array(DF_data['Deaths'])

Define the function
def f(x,L,k,x0):

return L/(1+np.exp(-k*(x-x0)))

coeffs, covar = curve_fit(f, x, y)

.
.
.

.

.
.
.

.

Curve_fit - Results

R squared: 0.9951845113335896
MSE: 461578.7906243469

Does this seem like a good prediction? What are the positives and
negatives?

.
.
.

.

.
.
.

.

Covariance matrix gives us information about our parameters

array([[1.29603121e+05, -9.75495123e-01, 1.09683301e+02],
[-9.75495123e-01, 1.26666959e-05, -8.29256418e-04],
[1.09683301e+02, -8.29256418e-04, 1.24405955e-01]])

.
.
.

.

.
.
.

.

Covariance matrix gives us information about our parameters

The diagonals of this matrix tell me how much variance in in each of
the parameter estimations. Here we see that

• There is 1.29603121e+05 varriance in 𝐿 meaning that the choice
of 𝐿 could change a lot if our underlying data changed a little bit.
We would say our model is sensitive to the choice of 𝐿 and we
would worry that our model is overfitting our specific data in this
parameter.

• There is 1.26666959e-05 variance in 𝑘. This value is quite small
and this means we are fairly confident in our estimation of 𝑘

• There is 1.24405955e-01 variance in 𝑥0. This is somewhat small,
so while our data is somewhat sensitive to the center, it is not the
most sensitive part of the data.

.
.
.

.

.
.
.

.

Covariance matrix gives us information about our parameters

The off diagonal elements give us a glimpse of how uncertainty in one
parameter might cause uncertainty in another. For example the first
column represents how uncertainty in 𝐿 effects the other values in
order 𝐿, 𝑘, and 𝑥0

.
.
.

.

.
.
.

.

Predict the next month

.
.
.

.

.
.
.

.

Predict the next month

Here you can see that if we were using our function to predict into the
future we have a good basic shape, but we did not have very high
accuracy when considering the 𝐿 value or the carrying capacity. This is
just one of the many reasons that disease modeling is extremely
complicated!

.
.
.

.

.
.
.

.

Look at all the data!

Imagine how complicated it would be to fit the full range of data with
just one function!

This is why for more complicated data we need more advanced
methods. May of those methods require calculus, probability, or linear
algebra to understand.

.
.
.

.

.
.
.

.

Look at all the data!

.
.
.

.

.
.
.

.

YOU TRY
Redo this analysis for a different country. You should:

1 Choose a country and plot the data for just the months of March
and April

2 Try a polynomial fit, calculate MSE and R^2, graph the results.
Talk about what all these things tell you.

3 Try an exponential fit, calculate MSE and R^2, graph the results.
Talk about what all these things tell you.

4 Plot the log(y) vs x graph and talk about what it tells you.
5 Use curve_fit to do a logistic function fit of the data. Calculate

MSE and R^2, graph the results, and look at the covariance
matrix. Talk about what all these things tell you.

(extra) CHALLENGE: For each fit you tried above. Plot a prediction
for the next month (March, April and May). Add all of your models
(poly, exp, and logistic) to the graph one at a time. How do they do in
predicting the next month.

