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Example: Suppose a random variable is uniformly distributed on the interval (—2,3].
The graph of the density function is shown in Figure 2.8.

To compute a probability for a uniform random variable, we need only to find the area
of the appropriate rectangle. For example, to compute the probability that the value of x
is between —1 and 1.5, written P(—1 < X < 1.5), we simply compute the area of the
enclosed rectangle; that is,

Similarly, to find the probability of values between 0 and 2.5,

1
P(0< X <25)=(25-0)—F7 =05
0<X <25)=25-05 5
Notice that these intervals (—1,1.5) and (0,2.5) are the same lengths and, hence, have
the same probabilities.

The Normal Distribution. We have previously seen bell-shaped frequency distributions
in connection with empirically obtained data. Frequency distributions and histograms
that are bell-shaped are often represented by a normal distribution. 1t is a fact that
measurements from many random variables appear to have been generated from frequency
distributions that are closely approximated by a normal probability distribution. For this
reason the normal distribution is considered the most important probability distribution.
The normal distribution has the form

Hli) = —

oV 2w

—(eew)?
e 2t foroc >0, —co < p<00, —00<T <X, (28)

The normal distribution function depends upon the location and shape parameters 2 and
o. The choice of symbols for these parameters is not an accident. It is an exercise to
show that i and o2 are the mean and variance of a normal random variable. The graph
of a normal distribution in Figure 2.9 shows the characteristic bell-shape.

This curve also shows other important features. Note that f (x) obtains its maximum at
the point = = y, and that the curve is symmetric about x = p. The function is decreasing
as = moves away from g. It is a worthwhile exercise (see Exercise 8) to show that the
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FIGURE 2.9 The Normal Distribution with o = 0 and o =1
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normal distribution (28) obtains its maximum at = = g and that it has inflection points
atr =ptao.

An often cited rule of thumb for determining if a data set is from a normal distribution
is the “68 - 95 - 99” rule. It states that for a normal distribution, approximately 68% of
the data (area) is within one standard deviation of the mean; that is,

Plp—o< X < pu+0o)=0.6827. 29)

Similarly, two standard deviations from the mean, i + 20, contains approximately 95%
of the data. Three standard deviations from the mean, u 4 30, contains approximately
99% of the data. A large data set is approximately normally distributed if one, two, and
three standard deviations about the sample mean contain approximately these percentages
of data.

The Binomial Distribution. Some experiments consist of the observation of a trial
which results in one of two possible outcomes. For instance, a coin flip lands either
heads up or tails up, a manufactured item is either defective or non-defective, or a free
throw either hits or misses the basket. These are just some examples of a Bernoulli
random variable which results when an experiment has only two outcomes, often labeled
“success” or “failure.”
More specifically, a random variable X that assumes only the values 0 or 1 is known
| as a Bernoulli variable, and the performance of an experiment with only two possible
outcomes is called a Bernoulii trial. A Bernoulli random variable X is a discrete random
variable since it has only two possible values. The Bernoulli distribution is given by

f(z) =p%¢"™* forz=0,1 ) (30)

where p = P[X = 1] is the probability of a “success” and ¢ = 1 — p = P[X = 0] is the
probability of a “failure.”

Notice that E(X) =0-g+1-p=pand E(X?) =0%.¢+ 1%2-p = p, so that the
variance of X is V(X) =p—p® = p(1 — p) = pq.

An important assumption often made when performing Bernoulli trials is that successive
trials are independent; that is, the probability of the occurrence of a success or failure on
a trial does not depend upon the outcome of the previous trial (or trials).

When a sequence of n independent Bemoulli trials are conducted, an important
distribution arises from counting the number of successes that occur. Let ¥ be the
number of successes that occur on n independent Bernoulli trials. Since successes or
failures occur randomly, Y is a random variable with possible values 0,1,...,n. The
distribution of Y is known as the binomial distribution and has the form

F(k) = (‘;)p’fqﬂ—k fork=0,1,...,n. 31)

The expression (7.) is known as the binomial coefficient or the combination number, and

is defined by
n n!
(k) TR (B2
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The symbol “!” represents the factorial, and is defined for each positive integer n by
M=nxn-1)xn-2)x---x2x1 (33)
As a convention, we define
0l =1. (34)

Note that the binomial distribution is completely determined by the parameters n and
p and that a sum of n independent Bernoulli random variables is binomially distributed.
See Exercise 9.

To understand the binomial distribution, we first consider the binomial coefficient. The
binomial coefficient is a device for counting the number of ways k items can be chosen
from n items where order is unimportant. For example, (5;) is the number of 5 card
hands that can be dealt from a 52-card deck.

As another example, the number of ways that two heads can occur on four coin tosses

() - =

We easily verify this value by listing all of the possible arrangements of two heads on
four tosses. If we let “H” denote heads and “T” denote tails, then two heads occur on
four coin tosses in the following six ways: HHTT, HTHT, HTTH, THTH, TTHH, and
THHT. ‘

Continuing this example, we compute the probability of two heads’s occurring on four
coin tosses. Since a (fair) coin has probability p = 1/2 of landing heads and g = 1/2 of
landing tails, each of the six outcomes listed above has probability

1 1 1 1 1

S X =X =X == —

272 2 2 16
of occurrence. Since these six outcomes are the only ways to have two heads occur on
four coin tosses, we have

18

. : 1
P[ Two heads on four coin tosses | = 6 X T

Now this is the same value we obtain from the binomial distribution, for if Y represents
the number of heads which occur on n = 4 coin tosses, then

rra-()(3) G) -5

The binomial distribution does not require that p = ¢ as is the case with fair coin flips.
As another example, suppose that a manufacturing process produces 5% defective light
bulbs. A box of n = 20 light bulbs will contain two defective bulbs with probability

(220) (0.05)2(0.95)'® = 0.1887.

In light of the above discussion, it is useful to note the form of this expression. The
coefficient (220), which is the number of ways to find two defective bulbs in a box of 20,
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\
is multiplied by the probability (0.05)? of two defectives and then multiplied by (0.95)'8,
the probability of 18 nondefective bulbs.

In this last example, if a there is a 5% chance that a light bulb will be defective, then it
is reasonable to expect that a box of 20 light bulbs would contain 20 x 0.05 = 1 defective
bulb. This is indeed the case. Exercise 9 asks the reader to show that the mean of a
binomial random variable Y is

E(Y) = np, (3%5)
and the variance of Y 1s

V(Y) = npq. (36)

2.3.3 Environmental versus Demographic Stochasticity

We began this chapter with an example of a hypothetical declining squirrel population.
We assumed that the growth rate of —0.5 is actually an average growth rate for that
population. These considerations led us to a brief study of some of the ideas of probability
and statistics. In this section, we model a population using the tools we developed.

There are many reasons for variations in birth or death rates. Variations resulting
from slight changes in the population’s behavior or structure are called variations due
to demographic stochasticity. Variations from environmental conditions (flood, drought,
fire, etc.) are called variations due to environmental stochasticity.

Since each year the numerical values of the birth and death rates vary about some
central value and values far from this central value are rare, we frequently assume that
demographic stochasticity follows a normal distribution. Environmental stochasticity can
take many forms. We will consider it to be a catastrophe that randomly affects the
population. For instance, a flood may occur on average once every 25 years or 4% of the
time. We incorporate environmental stochasticity as a Bernoulli random variable; either
a catastrophe occurs, or it does not. Most software has uniform and normal random
numbers built in, but a Bernoulli random number generator is rare. We can, however,
construct a Bernoulli random number from a uniform random number chosen between
[0,1]. Suppose we want a Bernoulli random number which is a success 4% of the time.
We pick a uniform random number between 0 and 1. If the number is less than 0.04,
then we consider it a success; if it is greater than 0.04, we consider it a failure.

Stochasticity and the Sandhill Crane. We have previously modeled the population of
the Florida sandhill crane. We considered the population under the three different growth
rates determined by the best, medium, and worst environmental conditions. Each of these
conditions gave a fixed average value of the growth rate r. In this example, we use both
birth and death rates for the cranes. The average reproduction rate of the sandhill crane
is 0.5, while the average death rate is 0.1. Demographic stochasticity affects the birth
and death rates. Here we assume that the birth and death rates are normally distributed
with means of 0.5 and 0.1 respectively. The standard deviations of these birth and death
rates are 0.03 and 0.08 respectively. We further assume that a catastrophe will occur on



