Introduction to Mathematical Modeling

Professor:

Dr. Joanna Bieri joanna_bieri@redlands.edu

OFFICE: AHN229

Markov Models

Goal: Use Matlab to analyze the following Markov models. PART 1 - For each of the systems drawn here

(a). Write down the recurrence relations for the system and explain what is happening in the system.

$$x_1(n+1) =$$
$$x_2(n+1) =$$

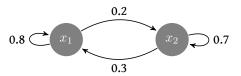
(b). Write the system in matrix form:

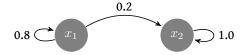
$$\vec{x}_{n+1} = T\vec{x}_n$$

- (c). Using Matlab:
 - Enter the matrix T:

$$T(1,:) = [,];$$

 $T(2,:) = [,];$


• Find eigenvalues and eigenvectors:


$$[d, v] = eig(T)$$

• Normalize the dominant eigenvector (located in column *a* - you will have to decide what this number is.):

$$Norm = d(:, a)./sum(d(:, a))$$

- What does the normalized eigenvector tell you about your system?
- (d) Find L such that it $\bar{x}=L\bar{x}$ where $L\sim T^{100}$. (In Matlab type: $L=T^{100}$.)
- (e) Does L match what you found from your normalized eigenvector?
- (f) In the one of the systems, we call x_2 an "absorbing state". Which one and why?

PART 2.

For the following matrix, Markov system, are there any absorbing states? How do you know? Draw a state diagram for the system. What can you learn about this system from Matlab?

$$\vec{x}_{n+1} = \begin{bmatrix} .2 & 0 & .1 & 0 \\ .1 & 1 & .9 & 0 \\ .3 & 0 & 0 & .2 \\ .4 & 0 & 0 & .8 \end{bmatrix} \vec{x}_n$$

HOMEWORK 7 (Last One!) - Please hand in your answers to this worksheet AND a printed copy of your code with your own comments about what the code is doing.