For each of the following differential equations:

- What is the independent variable?
- What is the dependent variable?
- List all parameters.
- Classify the differential equation.
- Reduce it to the equivalent first order system.

$$\frac{d^2x}{dt^2} + mx = 0$$

$$\frac{d^4y}{ds^4} - \sin\left(\frac{dy}{ds}\right) = m$$

For each of the following differential equations:

- What is the independent variable?
- What is the dependent variable?
- List all parameters.
- Classify the differential equation.
- Reduce it to the equivalent first order system.

$$\frac{d^2x}{dt^2} + \frac{g}{L}\sin(x) = 0$$

$$\frac{d^3z}{dt^3} + bz = e^t$$

For each of the following differential equations:

- What is the independent variable?
- What is the dependent variable?
- List all parameters.
- Classify the differential equation.
- Reduce it to the equivalent first order system.

$$\frac{d^2x}{dt^2} - x^2 = e^t$$

$$\frac{d^3p}{dx^3} + \frac{d^2p}{dx^2} - \frac{b}{a}x = 0$$

For each of the following differential equations:

- What is the independent variable?
- What is the dependent variable?
- List all parameters.
- Classify the differential equation.
- Reduce it to the equivalent first order system.

$$\frac{d^2x}{dt^2} + \frac{b}{m}\frac{dx}{dt} + kx = F\cos(t)$$

$$\frac{d^5y}{ds^5} - \frac{dy}{ds} = 0$$