Numerical Analysis - Homework 5

Professor:

Dr. Joanna Bieri joanna_bieri@redlands.edu

Office Hours:

Check the class website for office hours: numerical.joannabieri.com

Homework Problems

You should attempt all these problems before class, but we will work on them in class with our groups.

- Respond the to questions or prompts in the Jupyter Notebook from class: ErrorNumerical-Methods.ipynb
- Consider the following code:

```
import numpy as np
x=2
N=60

for i in range(N):
    x=np.sqrt(x)

for i in range(N):
    x=x**2

print(x)
```

- 1. What should this code do?
- 2. What should it print at the end?
- 3. Now program this in python. Does it print what you would expect? Is there any value of N that will give you the result you expect?
- Consider Stirling's Famous approximation for the factorial function

$$n! = n^n e^{-n} \sqrt{2\pi n}$$

- 1. Write python code that evaluates the accuracy of this approximation.
- 2. You should use np.factorial(n) to calculate the "true" factorial
- 3. Make a panda's table that lists n, the true value of n!, the approximate value, the absolute error, and the relative error for $n = 1, 2, 3, 4, \dots, 20$
- 4. Does the approximation get better or worse as n increases?