Numerical Analysis - Fixed Point Iteration

Consider the following iterations:

$$x_{n+1} = 5 + x_n - x_n^2 (1)$$

$$x_{n+1} = \frac{5}{x_n} \tag{2}$$

$$x_{n+1} = 5 + x_n - x_n^2$$

$$x_{n+1} = \frac{5}{x_n}$$

$$x_{n+1} = 1 + x_n - \frac{1}{5}x_n^2$$
(1)
(2)

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{5}{x_n} \right) \tag{4}$$

Show that $\alpha = \sqrt{5}$ is a fixed point for each of these iterations. Note that really the possibilities are endless. You could make up lots of iterations that would have $\alpha = \sqrt{5}$ as a fixed point.

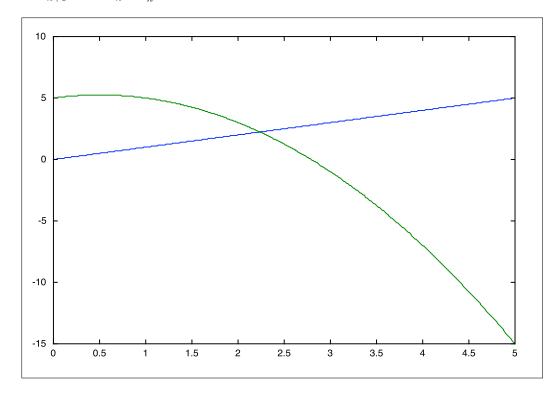
Now using Python, write a short program that starts with $x_0 = 2.5$ and does N = 5 steps for the above iterations. Print out each of the steps and describe in words what is happening. NOTE - You can use this code in your homework!

COBWEB DIAGRAMS

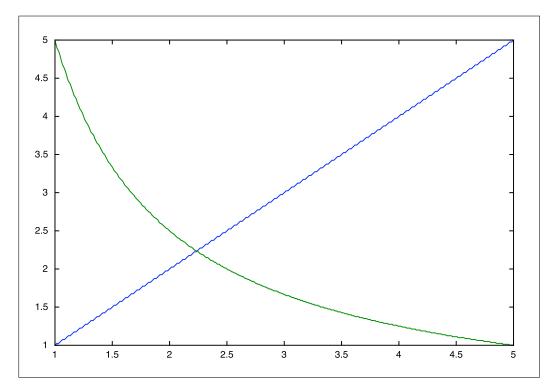
A graphical way to see the convergence or divergence of an iterative sequence OR a way to consider the stability of fixed points.

- 1. First choose a starting value x_0
- 2. Draw a vertical line from x_0 up to your g(x)
- 3. Draw a horizontal line to y = x, this is your x_1
- 4. Draw a vertical line from x_1 to your g(x)
- 5. Continue until you see what is happening.

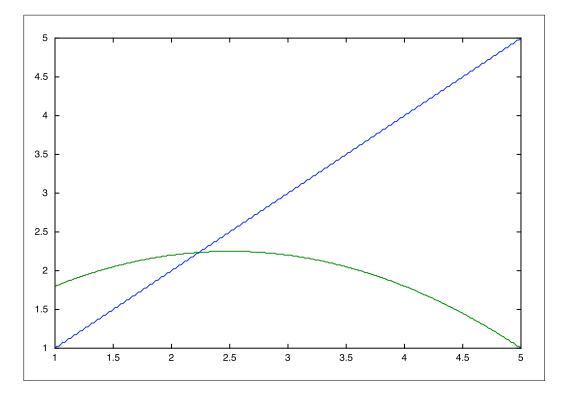
$$x_{n+1} = 5 + x_n - x_n^2$$



$$x_{n+1} = \frac{5}{x_n}$$



$$x_{n+1} = 1 + x_n - \frac{1}{5}x_n^2$$



$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{5}{x_n} \right)$$

