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Rootfinding and Optimization in Economics

Background: annuity interest rate, zefo-ﬁnding

We'll start with a simple economic application of rootfinding, the problem of determin-
ing the interest rate of an annuity when other characteristics of the annuity are specified.
Annuities involve compound interest and this is what makes the calculation of the interest
rate nontrivial.!

Suppose you want to set up an individual retirement account (IRA). You must consider
how many years you will deposit money into the account, the amount of each deposit, how
many vears you will draw from the account, and the amount that will be withdrawn each
year (or some other chosen time period). We're interested here in the problem you face if
you decide on all these factors, and then must determine what interest rate is necessary so
that the last debit will bring the account down to a balance of precisely zero after the last
withdrawal. For an example of this problem, suppose you want to deposit $2200 a year for
30 vears, and then withdraw $30.000 a year for the next 10 years, when you retire. (We'll
ignore taxes.) What interest rate do you need?

The following equation represents this situation [2, 3]:2

Pau[(L4 ) = 1] = Pl — (L 7)) =0 (1)
where
o P, = amount deposited for a set number of time periods
¢ N;, = number of deposits
¢ P, = amount withdrawn from the account for a set number of time periods
e N,.: = number of withdrawals
e r = interest rate received for each time period

We also assume that the withdrawals begin exactly one time period after the last deposit.
In general, you might consider the problem where we specify all the parameters except one
and ask what the remaining parameter should he. Actually, this is a straightforward problem

1Compound interest was once described by Albert Einstein as the “greatest mathematical discovery of
all time” (quoted in [1]).

2If you like algebra, you might enjoy deriving this equation. Hint: get out your high school algebra book
and use the formula for the sum of a finite geometric series. How is the formula changed if we wait an
additional Ny, 4 periods after the last deposit before withdrawing?



in all cases except when r is the unknown. In this case we need to use an iterative rootfinding
method.?

Background: differential pricing in monopolies, optimization

An application of iterative optimization in economics arises in a perfect or nearly perfect
monopolistic situation. In a perfectly competitive market, an individual producer is faced
with a demand curve and market price that is unaffécted by her production decisions. A
producer’s decision as to how much to produce is determined by input cost and factors of
scale. But the price she charges and gets is determined by the market. If she charges above
this price, her producis will not he hought and she will soon be driven out of business. A
producer is also unable to charge below the market price because in such a competitive
market, the market price is the lowest one that leads to an acceptable profit. All the
producers have optimized their operations as best they can to achieve a low price. The
only way a new producer can sell at a lower price is to discover some new manufacturing or
management technique which improves the production process.

Monopolists face a different process though: the price of their product in a market is
determined by their output. For a single market the monopolist must simply determine the
volume of output that maximizes revenues. In order to do this the monopolist considers the
demand curve of the market: the amount that will be purchased as a function of price. From
this curve the monopolist can determine how much revenue she will receive for a certain
volume of output. If the monopolist is selling her goods in more than one market and can
produce an unlimited volume of output, the situation remains the same. The volume of
goods to be sent to each market is determined simply by the demand curve for that market.

In contrast, when a monopolist can sell in more then one market and, for one reason or
another, can produce only a limited volume, her situation becomes more interesting. She
is then faced with the problem of determining the optimal output for each market, in such
a way as to maximize total revenues, but restricted by the constraint that her output be
no more than a given, known volume. This is an example of a constrained optimization
problem: the monopolist must maximize a known function representing revenues — subject
to a known constraint of her total production volume.

Background: constraints, zero-finding, and optimization

Note that there are constraints in both the annuity rate problem above and the monop-
olist’s pricing problem that we haven’t mentioned — namely that interest rates and prices
must always be nonnegative. In general, constrained problems are more difficult than un-
constrained problems and it's not difficult to see why. Iterative algorithms go their own way,
and if and when they bump into walls, we have to decide what to do from there. In practice
it’s common to begin by ignoring constraints and hoping for the best. If the unconstrained
solution obeys the constraints, we’re done. If not, it’s back to the drawing board. For exam-
ple, if you use an unconstrained root-finding method (like Newton’s method) for the annuity
rate problem and you get a positive interest rate, you're done. Just start your payments. If
you get a negative rate, then you have to think more. It may be that there is no feasible
solution to your problem. (Can this happen in this particular example?) Or it may be that
you have made a mistake somewhere along the line.

If you use an unconstrained iterative algorithm in an optimization problem and get an
infeasible solution, there is a third possibility, besides the possibilities of there being no

3Unless you can find the solution analytically. Do you think that’s possible in this case?
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solution at all, or an error. There may be a solution that is the best among all the ones
that satisfy the constraints, but different from the one you’ve found. This case requires
another level of sophistication in the development of efficient and robust algorithms, so-
called constrained optimization algorithms.

In some cases an optimization problem can be reduced to a zero-finding problem. If you
have some analytical expression for the function to be optimized (called the objective or cost
function), you can look for zeros of its derivative. But again, you need to worry about any
constraints that need to be respected by solutions.

Sometimes it’s also the case that a constraint can be used to eliminate one of the variables
in an optimization problem. This is (happily) the case in our monopolist’s problem. (Always,
though, you need to check the feasibility of your answer.) For example, if we formulate a
problem with three unknowns, z,y, and z, and we add the constraint that # + y + 2 = C,
a constant, then we can solve for one of the variables, say z = ' — & — y, substitute for z
in the objective function, and solve for the fwo unknowns = and y. (At the risk of being
monotonous, this doesn’t release you from the responsibility of checking the value of z you
get to see if it’s feasible.) In lucky situations like this when the result is feasible, you can at
one stroke reduce the number of variables, a big win, and eliminate a constraint.

Your assignment, basic part

Part 1:
Take the example of the annuities given above and find the required interest rates for the
three situations described by the data below:

Situation 1: P, = $2200 P, = $30,000 AN, =30 N,;: =10
Situation 2: P, = $2200 P, = $10,000 N;, =40 N, =40
Situation 3: P, = $2200 P, = $300,000 A, =40 N, =10

Try at least bisection and Newton’s Method. The mathematics behind these two algorithms
is described in Numerical Recipes in C [4] and we’ll certainly discuss them in class. Observe
the rates at which these algorithms converge. Try different starting points and note the
variation of running time. Does Newton’s method ever fail to converge?

I can’t and won't try to stop you from using the code in [4]. But what I want you to
do, and what will be easier and more instructive, will be to look over their code and write
your own. Don’t try to make it bulletproof. And by all means, start with a very simple
case and work up to more complicated examples. (I always start programming by having
my program read some data and say hello. I always have a version that compiles and runs
correctly before I go on.) This goes for all the assignments this term. As I mention in the
information page for the course, I haven’t installed the disk that comes with the book, and
I've never used it. You may want to use it later in life, when you've coded some of the
simpler algorithms yourself.

Another thing to consider in this problem and those that follow is the plausibility of your
answers, or any other numbers you generate. Be sure to ask yourself continually whether
the numbers you're getting make sense in the given situation.

Part 2:

Consider next the case when a monopolist is faced with two separate markets and a constraint
on total production volume. As discussed above, if we use volumes in each market as the
variables, we can reduce the problem to optimization in one variable. If, further, we know



the derivative of the resulting objective function in analytical form, the problem becomes
very similar to the annuity rate problem, finding the zero of a known function.

In this part of your assignment, a drug company has developed a treatment for people
infected with the HIV virus. Due fo a shortage of production equipment and the company’s
desire to monitor carefully the people given the drug, production has been limited to 10,000
treatments. These treatments can be administered only at the company’s two laboratories,
which are located in the U.S. and Frenetia.

The company must decide how to set volumes and prices in the two markets to maximize
revenue, given the limitation on total output.

Shown below are functions for the the demand curves representing the U.S. and Frenetia,
respectively:

Dy = (1.1 x 10%)(e~13x107°Fr) (2)

D, = (9_0 w 103)(6—2.1x1o—5P2) (3)
The objective function is the total revenue, which is

f(-D13D2)=P1*D1 +P2*D2 (4)

given that Dy units are sold in the U.S. at a corresponding price of P;, and similarly for
Frenetia.

Determine the optimal number of treatments the company should offer in each market.
Also find the corresponding prices and the resulting revenue. Again, try at least bisection
and Newton's method. As above, compare the rate at which these algorithms converge, and
investigate the sensitivity to starting point.

Notice that I couched the problem in terms of the unknowns Dy and D, but you can
just as well use the corresponding prices P, and P; as the unknowns. For this to work, it is
important that there be only one price for a given demand in each market, which is the case
in this example because of the monotonically decreasing shape of the demand curves. (Is it
reasonable to assume that the demand curves are always uniquely invertible?)

There is a real practical advantage to using demands as unknowns, though. The con-

straint then takes the form
Dy + Dy = 10000 (5)

which simplifies the algebra when you eliminate one of the variables. I’ll let you finish the
job of reducing the problem to one of minimizing a function of one variable.

After vou solve the case above, experiment with different constants Ay, Az, By, and B,.
Can you think of cases where you can predict your answer, and therefore test your program?
(These are often a big help in debugging.) Can you predict which way the optimal volumes
and prices move when vou vary the relative demands in the two markets? (This kind of
experimentation is a valuable way to gain confidence in your programs.)

Part 3:
The problem for the monopolist gets harder when there are more than two markets. For
three markets and a constraint on total volume, for example, her problem becomes one of
minimizing a function of two variables instead of one. That might seem like it’s only twice
as hard in some sense, but it can be, depending on how nasty the shapes of the demand
curves are, a lot harder than that.

We'll consider the problem of pricing theater seats. A theater operator is free to charge
different prices to different segments of the population, and in that sense has a kind of
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monopoly hecause no one else is selling seats to her particular show. Suppose we decide on
three categories: townies, alumni, and students, and let the respective demand curves be

D, = T50e~%55P (6)
Dy = 10000657 (7)
Dy = 11001955 (8)

Suppose also that there are altogether 1100 seats in the theater., How many seats should be
offered in each category at what prices, and what is the total resulting revenue expected?

Reduce the problem to one with two unknown variables. To solve it, start with the
fixed-step gradient algorithm. That is, make each step proportional to the gradient. If xy
is the n-dimensional variable at step ¢, and we are trying to marimize f(x), this means the
iteration step is

Xip1 = X; + sV f(xj) (9)
where s is a fixed step size. This is literally a “hill-climbing™ algorithm, going uphill locally
a distance that is a fixed multiple of the derivative in the that direction.

Implement the fixed-step algorithm and try it on the monopolist’s three-market (two
variable) example. Experiment with different values of s. What happens when 2z is too
large? Too small?

The next level of sophistication in gradient algorithms is the “optimum-step-size” gradient
searches for the maximum of f(x) in the gradient direction. That is, at each step in the
iteration, the right-hand side of (9) is maximized by searching of values of s. Implement
the optimum step-size gradient algorithm by using bisection search for s and try it on the
monopolist example with three markets. (You should be able to lift the code you wrote for
the first part of this assignment. But you need to figure out an effective way to bracket the
answer along the gradient direction before you hegin chopping down the range.) How does
its performance compare with the fixed-step method?

Finally, implement Newton-Raphson on the three-market monopolists problem, and com-
pare with the fixed- and optimum-step-size methods. Which is the fastest and which is the
most reliable for this problem?

If you have time, it’s interesting to plot the trajectories followed by the different algo-
rithms in the z-y plane.

Extra Credit

1. Try the following data for the theater owner’s problem:

Dy = 400e~%152 (10)
Dy = 700e055F: (11)
Ds = 5000 (12)

Seats = 1100 (13)

What goes wrong? What can you do about it?

2. You used iterative optimization techniques in this assignment. But were they necessary?
Try to solve the problems analytically. Can you conclude that analytical solutions are im-
possible? Unlikely? You might want to use Mathematica or Maple [3, 6, 7, 8]. Can you find
other demand functions which lead to optimization problems that can be solved analytically?
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8. Can you find demand functions for either one- or two-variable problems like the ones
in this assignment that lead to objective functions with more than one local minimum? I
suggest you restrict the demand functions to be monotonically decreasing, so there’s only
one price that corresponds to each demand.

4. In the early days of work on nomnlinear optimization algorithms, some bizarre functions
were devised to test algorithms. Rosenbrock’s banana-shaped valley [9] is the most famous.
The problem is to minimize the following function of two variables:
Fe,y) = 100(y — 22 + (1 — 2)? (14)
If you’re used to thinking in terms of maximization, just multiply by —1.
e Why can this function called a banana-shaped valley?

¢ Try your Newton-Raphson algorithm on this for various starting points. Does it work
reliably? Efficiently?

¢ For a more advanced project, experiment with other methods, possibly some of your
own invention.

Fletcher and Powell [10] proposed the following even trickier three-dimensional test func-
tion:

Flz,y,2) = 100 [(z — 106)* + (r — 1)?] + 22 (15)

where
r = rcos(276) (16)
y = rsin(27x8) (17)

That is, » and & are polar coordinates in the z-y plane. Warning: be careful to choose the
right quadrant if you use the arctan function to get #. This 1s a frequent source of headaches.

e Why can this be called a helical valley?
¢ Repeat the experiments you did for the curved banana valley.

Aoki’s book [11] uses a fair amount of math (vector algebra and calculus) and is a bit
dated, but is a clear and compact exposition of basic nonlinear optimization algorithms. He
also gives other test functions, and discusses comparison of methods.

Scales [12] is a bit less mathematical, a bit more up-to-date, and has some illuminating
figures of examples as well as good pseudocode. If you enjoy numerical pathologies, Scales
includes, besides the Rosenbrock and Fletcher-Powell functions mentioned above, two more
wicked beasts: a four-dimensional function (called “Wood’s function” without further iden-
tification) that has a “near saddle point and a variety of possible paths to the minimum,”
and finally a singular function of four variables due to M. J. D. Powell.

Dennis and Schnabel [13] (referenced in Numerical Recipes [4]) is more mathematical
than Aoki, and doesn’t deal with constrained minimization problems.

5. See the projects page for an application to option pricing.
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