Differential Equations - Homework 7

Professor:

Dr. Joanna Bieri joanna bieri@redlands.edu

Homework 7

Directions: Do the following book problems

From the book:

Chapter 1 Review Problems: 4, 7, 10, 33 Chapter 2.1 Problems: 2, 9, 11, 12

Other Notes:

- 1. Take advantage of Dfield to draw solution curves. You can also use Desmos.com to plot your final solutions. Graphs and Plots are really helpful in applied problems!!
- 2. Applied problems can be overwhelming, the best way to approach them is to work on one thing at a time:
 - First write down everything you are given and try to translate into math as much as possible.
 Ex. I hear rate of change and I think derivative.
 - Draw diagrams for the system being modeled.
 Sometimes this is a sketch of the problem sometimes it is a compartmental diagram like in class.
 - Now figure out the equations you need to solve.
 - Then solve the equations using methods you know or just learned.
 - Always ask if your answer makes sense. Graphing your solution really helps!
- 3. When the book says "logistic population" they mean a population that satisfies

$$\frac{dP}{dt} = R\left(1 - \frac{P}{K}\right)P$$

where R is the max growth rate and K is the carrying capacity or population limit. You are usually given a few pieces of information that you can plug in to solve for R and K.

The book writes this equation a little differently. Eqn (3) on page 79:

$$\frac{dP}{dt} = kP(M-P)$$

where $k=\frac{R}{K}$ and M=K to translate this back to our variables. In general you can use either form of the equation.