o if 7 > 1, then ) an diverges

o if 7 = 1,then }  an could converge or diverge.

is test works since limp,— 00 {/@rn = r tells us that the se-
is comparable to a geometric series with ratio r.) Use this
{est to determine the behavior of the series.

engthen Your Understanding
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1n Problems 96-98, explain what is wrong with the statement.

06, The series Y (—1)>™/n” converges by the alternating
series test.

The series Y 1/(n® + 1) converges by the ratio test.
The series Y1 /n3/? converges by comparison with

98.
- YR

[n Problems 99-101, give an example of:

! - o0
99. A series y -
verges.

an that converges but 3>  |an| di-
100. An alternating series that does not converge.
101. A series Y an such that

Hm Ia‘n+1l
n—00 |an|

=3.

Decide if the statements in Problems 102-117 are true or false.
Give an explanation for your answer.

102, If the terms sy, of a sequence alternate in sign, then the
sequence COnverges.

H0 < an < by forall nand ) a, converges, then
>~ b converges.

If0 < an < by forallnand 3 an diverges, then 3 by,
diverges.

VI b, < an < 0 for all n and by converges, then
3" an converges.

103,

104.

. IS a, converges, then 3" |an| converges.

107. I} an converges, then hm |@nti|/lan] # 1.

108.

109,

110.
111.

112.

113.
114.

115.
116.
117.

118.

Z(—l)n cos(27rm) is an alternating series.

n=0

oo :
The series Z( —1)™2™ converges.

n=0
If 3 an converges, then Z(—l)"an' converges.

If an alternating series converges by the alternating series
test, then the error in using the first 72 terms of the series
to approximate the entire series is less in magnitude than
the first term omitted.

If an alternating series converges, then the error in using

the first » terms of the series to approximate the entire
series is less in magnitude than thé first term omitted.

If ) jan| converges, then 3 (—1)"|a.| converges.

To find the sum of the alternating harmonic series
S7(=1)""!/n to within 0.01 of the true value, we can
sum the first 100 terms. ’

If Z ax is absolutely convergent, then it is convergent.

If ) an is conditionally convergent, then it is absolutely
convergent.

If dn > 0.5b, > O for all n and ) by, diverges, then
3" an diverges.

Which test will help you determine if the series converges

or diverges?
k3 +1
k=1

(a) Integral test
(b) Comparison test
(c) Ratio test

9 D POWER SERIES AND INTERVAL OF CONVERGENCE

and In z.

In Section 9.2 we saw that the geometric series Y . az™ converges for —1 < z < 1 and diverges
otherwise. This section studies the convergence of more general series constructed from powers.
Chapter 10 shows how such power series are used to approximate functions such as e®, sin z, cos z,

A power series about z = a is a sum of constants times powers of (z — a):

Co+Ci(z—a)+Calz—a)’ ++-- + Cp(z — a)"

1

= ZC,,,(:L' a)”
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We think of @ as a constant. For any fixed z, the power series ) Crn(z — a)™ is a series of
numbers like those considered in Section 9.3. To investigate the convergence of a power series, we
consider the partial sums, which in this case are the polynomials Sy, (z) = Cp+Cy(x—a)+ Cy(z—

a)? 4 - -+ + Cn(z — a)™. As before, we consider the sequence®

So(m), Sl(:lt), 52(.'1:), ,Sn(:l)),

For a fixed value of z, if this sequence of partial sums converges to a limit S, that is, if
lim S,(z) = S, then we say that the power series converges to S for this value of z.
n—+00 ]

A power series may converge for some values of z and not for others.

Example 1 Find an expression for the general term of the series and use it to write the series using 3" notation:

(-2 (@-2° (@-2° (z-27°
1 9 ‘Tt T T

Solution The series is about z = 2 and the odd terms are zero. We use (i — 2)2" and begin with n = 2. Since
the series alternates and is positive for n = 2, we multiply by (—1)™. For n = 2, we divide by 4, for
n = 3 we divide by 9, and in general, we divide by n2. One way to write this series is

— (~1)"(z — 2)*
2( )(:2 "

x  n
Example 2 Determine whether the power series E om converges or diverges for

n=0
(a) z=-1 b) z=3
Solution (a) Substituting x = —1, we have
oo n o0 [> 0] n
n=0 n n=0 . 2 7;0 2

This is a geometric series with ratio —1/2, so the series converges to 1/(1 — (—3)) =2/3.
(b) Substituting x = 3, we have

o0 n °°3n o0 3 n
> r=25->(3)
n=0 n=0 n=0

This is a geometric series with ratio greater than 1, so it diverges.

Numerical and Graphical View of Convergence
Consider the series

(z—1)"

z—1)2 n (z-1P° (z-1)?*
2 3 4
To investigate the convergence of this series, we look at the sequence of partial sums graphed il

(m_l)_( + o (=1L R

8Here we call the first term in the sequence So(z) rather than S () so that the last term of Sy, (x) is Cp (z — a)™.
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’ Figure 9.11. The graph suggests that the partial sums converge for z in the interval (0, 2). In Ex-

. amples 4 and -5, we show that the series converges for 0 < z < 2. This is called the interval of
~ convergence of this series.

Atz = 1.4, which is inside the interval, the seriés appears to converge quite rapidly:

S5(1.4) = 0.33698... S7(1.4) = 0.33653. ..
S6(1.4) = 0.33630... Ss(1.4) = 0.33645...

Table 9.1 shows the results of using z = 1.9 and z = 2.3 in the power series. For z = 1.9,
~ which is inside the interval of convergence but close to an endpoint, the series converges, though
 tather slowly. For z = 2.3, which is outside the interval of convergence, the series diverges: the.
larger the value of n, the more wildly the series oscillates. In fact, the contribution of the twenty-
1 ﬁfth term is about 28; the contribution of the hundredth term is about —2,500,000,000. Figure 9.11
. shows the interval of convergence and the partial sums.

v

Interval . S14(z) 55(x) Table 9.1 Paf'tial sums for series in
— / Example 4 with x = 1.9 inside interval

0
convergence -
of convergence.and x = 2.3 outside

|

|

|

| n | S.(1.9) n 5n(2.3)

i N 2 | 0495 2 0.455

9| 3 5 | 069207 5 1.21589

i 8 | 061802 8 0.28817

; 11 | 065473 || 11 1.71710

: Ss(m)

! : 14 | 063440 || 14 | —o0.70701

r=2 511(.’17)

Figure 9.11: Partial sums for series in
Example 4 converge for 0 < = <2

Notice that the interval of convergence, 0 < z < 2, is centered on z = 1. Since the interval
__extends one unit on either side, we say the radius of convergence of this series is 1.

of Convergence

" Each power series falls into one of three cases, characterized by its radzus of convergence, R. This
- radius gives an interval of convergence.

B R- .
¢ There is a positive number R, called the radius of convergence, such that the series
converges for |z — a| < R and diverges for |z — a| > R. See Figure 9.12.
Using the radius of convergence, we make the following definition:

o The interval of convergence is the 1nterval between @ — R and a + R, including any
endpoint where the series converges.

e R ————>

Series . Series
diverges ————Interval of convergence ——— diverges
— : - z
a—R a a+R

Figure 9.12: Radius of convergence, R, determines an interval, centered at = a, in which the series converges

There are some series whose radius of convergence we already know. For example, the geo-
metric series
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Ltz + 4z ..
converges for |z| < 1 and diverges for |z| > 1, so its radius of convergence is 1. Similarly, the

series . .
1+2 4 (£)2+-- + (£)n+
3. \3 3
converges for |z/3| < 1 and diverges for |/3| > 1, so its radius of convergence is 3,

The next theorem gives a method of computing the radius of convergence for many series. To
o .

find the values of x for which the power series Z Cn(z — a)” converges, we use the ratio test.
n=0

Writing a, = C,(z — a)™ and assuming C,, # 0 and # a, we have

oyt - .
gim 19l o [Cea(@ — )t i |Crillz —af — |z - af lim [Cot1l

n—co Ianl n—rco IC’n(J; — a)"l [ rest lCnl n—roa ICnl a

Case 1. Suppose ILm |an1]/lan| is infinite. Then the ratio test shows that the power series con-
n—o0 .

verges only for z = a. The radius of convergence is R = 0.

Case 2. Suppose li}m Jans1|/|an| = 0. Then the ratio test shows that the power series converges
n—>o00

for all z. The radjus of convergence is R = 0. v

Case 3. Suppose’ lim |any1|/|an| = K)z.— a|, where lim |Crnt1|/|Cn| =K. I Case 1, K

. n—oo —0Q

does not exist; in Case 2, K = 0. Thus, we can assume K exists and K # 0, and we can define
R = 1/K. Then we have

lim [ansa]
n—=oo |an|
so the ratio test tells us that the power series:

e Converges fOrl—?;I_z—aI < 1; thatis, for |z — a| < R

|z —al

=Klz—a|= T

e Diverges for [=—af > 1; thatis, for |z — a| > R,

The results are summarized in the following theorem.

!

Theorem 9.10: Method for Computing Radius of Convergence

o0
To calculate the radius of convergence, R, for the power series Z Cr(z — a)™, use the ratio
n=0
test with a, = Cp(z — a)™.
e If lim |any1|/|ay] is infinite, then R = 0.
T—+00
‘o If lim |any1]/|an| =0, then R = oo.
n—o00

o If le |ant1|/lan| = K|z — al, where K is finite and nonzero, then R = 1/K.
n—00 :

Note that the ratio test does not tell us anything if lim,, o |@n1|/|ax| fails to exist, which can
occur, for example, if some of the C,,s are zero. '

A proof that a power series has a radius of convergence and of Theorem 9.10 is given in the
online theory supplement. To understand these facts informally, we can think of a power series as
being like a geometric series whose coefficients vary from term to term. The radius of convergence
depends on the behavior of the coefficients: if there are constants € and K such that for larger and
larger n, :
' ICnl ~CK",

then it is plausible that 3~ C,z™ and 3~ CK"z™ = >~ C(Kz)™ converge or diverge together. The
geometric series ) , C(Kz)™ converges for |Kz| < 1, that is, for |z] < 1/K. We can find K using
the ratio test, because
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|ant1] _ |Criall(z — a)™+!] ., CE™(z — a)"*!| = K|z — af
|an] [Crll(z — @)™ CK™(z—a)| '
Example3 Show that the following power series converges for all x:
z? " 8 z"
1+$+E+E+.“+;L—!+”'.
Solution Because C,, = 1/n!, none of the C),s are zero and we can use the ratio test:
C 1 1! !
lim la"—"rl—l=|ac| lim |—7ill=|a:| lim M:]:ﬂ i L=|:1:| lim =
This gives R = 00, so the series converges for all z. We see in Chapter 10 that it converges to e®.
Example4 - Determine the radius of convergence of the series
z—1 z—12 (z-1)% (zr-1)* z - 1)"
R RS IS Vi | P o | S
3 2.3 3-3 4.3 n - 3"
‘What does this tell us about the interval of convergence of this series?
Solution Because Cp, = (—1)"~1/(n - 3™) is never zero we can use the ratio test. We have

i (=1~
o ann] - |Crga] . el . n _lz=1]
P = |1} lim_ 1Col —|$—1|n1£2°|7g—1 =y —|x—”n15203(n+1)— 3
. ’n",n B

Thus, K = 1/3 in Theorem 9.10, so the radius of convergenceis R = 1/K = 3. The power series
converges for |z — 1| < 3 and diverges for |z — 1] > 3, so the series converges for —2 < © < 4.

.Notice that the radius of convergence does not tell us what happens at the endpoints, z = —2 and

z = 4. The endpoints are investigated in Example 5.

What Happens at the Endpoints of the Interval of Convergence?

The ratio test does not tell us whether a power series converges at the endpoints of its interval of
convergence, £ = a + R. There is no simple theorem that answers this question. Since substituting
z = a = R converts the power series to a series of numbers, the tests in Sections 9.3 and 9.4 are
often useful.

Example 5

Solution

Determine the interval of convergence of the series -
-1 (=12 (-1 (@-1)* ="
- — e (=)
3 2.32 * 3-38 4-34 oot (1) n - 3"

In Example 4 we showed that this series has R = 3; it converges for —2 < z <4 and diverges for
z < —2orx > 4. We need to determine whether it converges at the endpoints of the interval of

convergence, z = —2 and = 4. At x = 4, we have the series
1 1 1 (—1)n-!
S H e RN T Sl A RO
5 + 371 + + " +

This is an alternating series with-a,, = 1/(n + 1), so by the alternating series test (Theorem 9.8), it
converges. At £ = —2, we have the series

This is the negative of the harmonic series, so it diverges. Therefore, the interval of convergence is
—2 < z < 4. The right endpoint is included and the left éndpoint is not.
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Series with All Odd, or All Even, Terms

The ratio test requires hm |an+1]/|an]| to exist for a,, = Cp(x — a)™. What happens if the power

series has only even or odd powers, so some of the coefﬁc1ents C,, are zero? Then we use the fact
that an infinite series can be written in several ways and pick one in which the terms are nonzero.

Example 6 Find the radius and interval of convergence of the series
1+ 2222 4 2424 42826 ...
Solution If we take a,, = 2"z" for n even and a,, = 0 forn odd, lim |any1|/|an| does not exist. Therefore,
n—o0
for this series we take
ap = 22nx2n,
so that, replacing n by n + 1, we have
Qg1 = 22(n+1)m2(n+1) — 22n+2w2n+2.
Thus,
Ian+1J ) '22n+2 2n+2| 5 o
= 5 |2 , = 4x2.
|an| [22ng2n|
We have
a.
lim lans] = 4z?
n-yoo |an|

The ratio test guarantees that the power series converges 1f 4z? < 1, that is, if |z| < L The radlus

of convergence is 2 The series converges for —5 <z <3 L and diverges for z > 2 or x < —— . At

T = :I:2 , all the terms in the serles are 1, so the series diverges (by Theorem 9.2, Property 3). Thus
. the interval of convergenceis —1 < z < 2
?
Example7 Write the general term a,, of the following series so that none of the terms are zero:

2 2 2T g®
TEmty owmta T

Solution This series has only odd powers. We can get odd integers using 2n — 1 for n > 1, since.

2:1-1=1, 2.2-1=3, 2.3-1=5, etc.

Also, the signs of the terms alternate, with the first (that is, n = 1) term positive, so we include a

factor of (—1)™~L. Thus we get

an = (1)1 ﬂ
" (2n - 1)

We see in Chapter 10 that the series converges to sin 2. Exercise 24 shows that the radius of conver-

gence of this series is infinite, so that it converges for all values of z.




