• if r > 1, then $\sum a_n$ diverges

• if r=1, then $\sum a_n$ could converge or diverge.

This test works since $\lim_{n\to\infty} \sqrt[n]{a_n} = r$ tells us that the series is comparable to a geometric series with ratio r.) Use this test to determine the behavior of the series.

94.
$$\sum_{n=1}^{\infty} \left(\frac{2}{n}\right)^n$$

95.
$$\sum_{n=1}^{\infty} \left(\frac{5n+1}{3n^2} \right)^n$$

Strengthen Your Understanding

In Problems 96-98, explain what is wrong with the statement.

- 96. The series $\sum (-1)^{2n}/n^2$ converges by the alternating
- 97. The series $\sum 1/(n^2+1)$ converges by the ratio test.
- 98. The series $\sum 1/n^{3/2}$ converges by comparison with 110. If $\sum a_n$ converges, then $\sum (-1)^n a_n$ converges.

In Problems 99-101, give an example of:

- 99. A series $\sum_{n=1}^{\infty} a_n$ that converges but $\sum_{n=1}^{\infty} |a_n|$ di-
- 100. An alternating series that does not converge.
- 101. A series $\sum a_n$ such that

$$\lim_{n\to\infty}\frac{|a_{n+1}|}{|a_n|}=3.$$

Decide if the statements in Problems 102-117 are true or false. Give an explanation for your answer.

- 102. If the terms s_n of a sequence alternate in sign, then the sequence converges.
- 103. If $0 \le a_n \le b_n$ for all n and $\sum a_n$ converges, then $\sum b_n$ converges.
- 104. If $0 \le a_n \le b_n$ for all n and $\sum a_n$ diverges, then $\sum b_n$
- 105. If $b_n \leq a_n \leq 0$ for all n and $\sum b_n$ converges, then $\sum a_n$ converges.
- 106. If $\sum a_n$ converges, then $\sum |a_n|$ converges.
- 107. If $\sum a_n$ converges, then $\lim_{n\to\infty} |a_{n+1}|/|a_n| \neq 1$.

- 108. $\sum_{n=0}^{\infty} (-1)^n \cos(2\pi n)$ is an alternating series.
- 109. The series $\sum_{n=0}^{\infty} (-1)^n 2^n$ converges.
- 111. If an alternating series converges by the alternating series test, then the error in using the first n terms of the series to approximate the entire series is less in magnitude than the first term omitted.
- 112. If an alternating series converges, then the error in using the first n terms of the series to approximate the entire series is less in magnitude than the first term omitted.
- 113. If $\sum |a_n|$ converges, then $\sum (-1)^n |a_n|$ converges.
- 114. To find the sum of the alternating harmonic series $\sum (-1)^{n-1}/n$ to within 0.01 of the true value, we can sum the first 100 terms.
- 115. If $\sum a_n$ is absolutely convergent, then it is convergent.
- **116.** If $\sum a_n$ is conditionally convergent, then it is absolutely convergent.
- **117.** If $a_n > 0.5b_n > 0$ for all n and $\sum b_n$ diverges, then $\sum a_n$ diverges.
- 118. Which test will help you determine if the series converges or diverges?

$$\sum_{k=1}^{\infty} \frac{1}{k^3 + 1}$$

- (a) Integral test
- (b) Comparison test
- (c) Ratio test

POWER SERIES AND INTERVAL OF CONVERGENCE

In Section 9.2 we saw that the geometric series $\sum ax^n$ converges for -1 < x < 1 and diverges otherwise. This section studies the convergence of more general series constructed from powers. Chapter 10 shows how such power series are used to approximate functions such as $e^{\dot{x}}$, $\sin x$, $\cos x$, and $\ln x$.

A power series about x = a is a sum of constants times powers of (x - a):

$$C_0 + C_1(x-a) + C_2(x-a)^2 + \cdots + C_n(x-a)^n + \cdots = \sum_{n=0}^{\infty} C_n(x-a)^n.$$

We think of a as a constant. For any fixed x, the power series $\sum C_n(x-a)^n$ is a series of numbers like those considered in Section 9.3. To investigate the convergence of a power series, we consider the partial sums, which in this case are the polynomials $S_n(x) = C_0 + C_1(x-a) + C_2(x-a)^2 + \cdots + C_n(x-a)^n$. As before, we consider the sequence⁸

$$S_0(x), S_1(x), S_2(x), \ldots, S_n(x), \ldots$$

For a fixed value of x, if this sequence of partial sums converges to a limit S, that is, if $\lim_{n\to\infty} S_n(x) = S$, then we say that the power series converges to S for this value of x.

A power series may converge for some values of x and not for others.

Example 1 Find an expression for the general term of the series and use it to write the series using \sum notation:

$$\frac{(x-2)^4}{4} = \frac{(x-2)^6}{9} + \frac{(x-2)^8}{16} - \frac{(x-2)^{10}}{25} + \cdots$$

Solution

The series is about x=2 and the odd terms are zero. We use $(x-2)^{2n}$ and begin with n=2. Since the series alternates and is positive for n=2, we multiply by $(-1)^n$. For n=2, we divide by 4, for n=3 we divide by 9, and in general, we divide by n^2 . One way to write this series is

$$\sum_{n=2}^{\infty} \frac{(-1)^n (x-2)^{2n}}{n^2}.$$

Example 2 Determine whether the power series $\sum_{n=0}^{\infty} \frac{x^n}{2^n}$ converges or diverges for

(a)
$$x = -1$$

(b)
$$x = 3$$

Solution

(a) Substituting x = -1, we have

$$\sum_{n=0}^{\infty} \frac{x^n}{2^n} = \sum_{n=0}^{\infty} \frac{(-1)^n}{2^n} = \sum_{n=0}^{\infty} \left(-\frac{1}{2}\right)^n.$$

This is a geometric series with ratio -1/2, so the series converges to $1/(1-(-\frac{1}{2}))=2/3$.

(b) Substituting x = 3, we have

$$\sum_{n=0}^{\infty} \frac{x^n}{2^n} = \sum_{n=0}^{\infty} \frac{3^n}{2^n} = \sum_{n=0}^{\infty} \left(\frac{3}{2}\right)^n.$$

This is a geometric series with ratio greater than 1, so it diverges.

Numerical and Graphical View of Convergence

Consider the series

$$(x-1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} - \frac{(x-1)^4}{4} + \dots + (-1)^{n-1} \frac{(x-1)^n}{n} + \dots$$

To investigate the convergence of this series, we look at the sequence of partial sums graphed in

⁸Here we call the first term in the sequence $S_0(x)$ rather than $S_1(x)$ so that the last term of $S_n(x)$ is $C_n(x-a)^n$.

Figure 9.11. The graph suggests that the partial sums converge for x in the interval (0,2). In Examples 4 and 5, we show that the series converges for $0 < x \le 2$. This is called the *interval of convergence* of this series.

At x = 1.4, which is inside the interval, the series appears to converge quite rapidly:

$$S_5(1.4) = 0.33698...$$
 $S_7(1.4) = 0.33653...$ $S_8(1.4) = 0.33630...$ $S_8(1.4) = 0.33645...$

Table 9.1 shows the results of using x=1.9 and x=2.3 in the power series. For x=1.9, which is inside the interval of convergence but close to an endpoint, the series converges, though rather slowly. For x=2.3, which is outside the interval of convergence, the series diverges: the larger the value of n, the more wildly the series oscillates. In fact, the contribution of the twenty-fifth term is about 28; the contribution of the hundredth term is about -2,500,000,000. Figure 9.11 shows the interval of convergence and the partial sums.

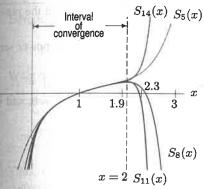


Figure 9.11: Partial sums for series in Example 4 converge for 0 < x < 2

Table 9.1 Partial sums for series in Example 4 with x = 1.9 inside interval of convergence and x = 2.3 outside

n	$S_n(1.9)$	n	$S_n(2.3)$
2	0.495	2	0.455
5	0.69207	5	1.21589
8	0.61802	8	0.28817
11	0.65473	11	1.71710
14	0.63440	14	-0.70701

Notice that the interval of convergence, $0 < x \le 2$, is centered on x = 1. Since the interval extends one unit on either side, we say the *radius of convergence* of this series is 1.

intervals of Convergence

Each power series falls into one of three cases, characterized by its radius of convergence, R. This radius gives an interval of convergence.

- The series converges only for x = a; the radius of convergence is defined to be R = 0.
- The series converges for all values of x; the radius of convergence is defined to be $R=\infty$.
- There is a positive number R, called the **radius of convergence**, such that the series converges for |x-a| < R and diverges for |x-a| > R. See Figure 9.12.

Using the radius of convergence, we make the following definition:

• The interval of convergence is the interval between a - R and a + R, including any endpoint where the series converges.

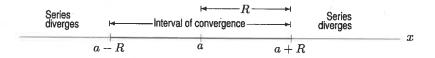


Figure 9.12: Radius of convergence, R, determines an interval, centered at x = a, in which the series converges

There are some series whose radius of convergence we already know. For example, the geometric series

$$1+x+x^2+\cdots+x^n+\cdots$$

converges for |x|<1 and diverges for $|x|\geq 1$, so its radius of convergence is 1. Similarly, the series

$$1+\frac{x}{3}+\left(\frac{x}{3}\right)^2+\cdots+\left(\frac{x}{3}\right)^n+\cdots$$

converges for |x/3| < 1 and diverges for $|x/3| \ge 1$, so its radius of convergence is 3.

The next theorem gives a method of computing the radius of convergence for many series. To find the values of x for which the power series $\sum_{n=0}^{\infty} C_n(x-a)^n$ converges, we use the ratio test.

Writing $a_n = C_n(x-a)^n$ and assuming $C_n \neq 0$ and $x \neq a$, we have

$$\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to \infty} \frac{|C_{n+1}(x-a)^{n+1}|}{|C_n(x-a)^n|} = \lim_{n \to \infty} \frac{|C_{n+1}||x-a|}{|C_n|} = |x-a| \lim_{n \to \infty} \frac{|C_{n+1}|}{|C_n|}.$$

Case 1. Suppose $\lim_{n\to\infty} |a_{n+1}|/|a_n|$ is infinite. Then the ratio test shows that the power series converges only for x=a. The radius of convergence is R=0.

Case 2. Suppose $\lim_{n\to\infty} |a_{n+1}|/|a_n| = 0$. Then the ratio test shows that the power series converges for all x. The radius of convergence is $R = \infty$.

Case 3. Suppose $\lim_{n\to\infty} |a_{n+1}|/|a_n| = K|x-a|$, where $\lim_{n\to\infty} |C_{n+1}|/|C_n| = K$. In Case 1, K does not exist; in Case 2, K=0. Thus, we can assume K=1/K. Then we have

$$\lim_{n\to\infty}\frac{|a_{n+1}|}{|a_n|}=K|x-a|=\frac{|x-a|}{R},$$

so the ratio test tells us that the power series:

- Converges for $\frac{|x-a|}{R} < 1$; that is, for |x-a| < R
- Diverges for $\frac{|x-a|}{R} > 1$; that is, for |x-a| > R.

The results are summarized in the following theorem.

Theorem 9.10: Method for Computing Radius of Convergence

To calculate the radius of convergence, R, for the power series $\sum_{n=0}^{\infty} C_n(x-a)^n$, use the ratio

test with $a_n = C_n(x-a)^n$.

• If $\lim_{n \to \infty} |a_{n+1}|/|a_n|$ is infinite, then R = 0.

- If $\lim_{n\to\infty} |a_{n+1}|/|a_n| = 0$, then $R = \infty$.
- If $\lim_{n\to\infty} |a_{n+1}|/|a_n| = K|x-a|$, where K is finite and nonzero, then R=1/K.

Note that the ratio test does not tell us anything if $\lim_{n\to\infty} |a_{n+1}|/|a_n|$ fails to exist, which can occur, for example, if some of the C_n s are zero.

A proof that a power series has a radius of convergence and of Theorem 9.10 is given in the online theory supplement. To understand these facts informally, we can think of a power series as being like a geometric series whose coefficients vary from term to term. The radius of convergence depends on the behavior of the coefficients: if there are constants C and K such that for larger and larger n,

$$|C_n| \approx CK^n$$
,

then it is plausible that $\sum C_n x^n$ and $\sum CK^n x^n = \sum C(Kx)^n$ converge or diverge together. The geometric series $\sum C(Kx)^n$ converges for |Kx| < 1, that is, for |x| < 1/K. We can find K using the ratio test, because

$$\frac{|a_{n+1}|}{|a_n|} = \frac{|C_{n+1}||(x-a)^{n+1}|}{|C_n||(x-a)^n|} \approx \frac{CK^{n+1}|(x-a)^{n+1}|}{CK^n|(x-a)^n|} = K|x-a|.$$

Example 3 Show that the following power series converges for all x:

$$1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \dots$$

Solution

Because $C_n=1/n!$, none of the C_n s are zero and we can use the ratio test:

$$\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = |x| \lim_{n \to \infty} \frac{|C_{n+1}|}{|C_n|} = |x| \lim_{n \to \infty} \frac{1/(n+1)!}{1/n!} = |x| \lim_{n \to \infty} \frac{n!}{(n+1)!} = |x| \lim_{n \to \infty} \frac{1}{n+1} = 0.$$

This gives $R = \infty$, so the series converges for all x. We see in Chapter 10 that it converges to e^x .

Example 4 Determine the radius of convergence of the series

$$\frac{(x-1)}{3} - \frac{(x-1)^2}{2 \cdot 3^2} + \frac{(x-1)^3}{3 \cdot 3^3} - \frac{(x-1)^4}{4 \cdot 3^4} + \dots + (-1)^{n-1} \frac{(x-1)^n}{n \cdot 3^n} + \dots$$

What does this tell us about the interval of convergence of this series?

Solution Because $C_n = (-1)^{n-1}/(n \cdot 3^n)$ is never zero we can use the ratio test. We have

$$\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = |x-1| \lim_{n \to \infty} \frac{|C_{n+1}|}{|C_n|} = |x-1| \lim_{n \to \infty} \frac{\left|\frac{(-1)^n}{(n+1) \cdot 3^{n+1}}\right|}{\left|\frac{(-1)^{n-1}}{n \cdot 3^n}\right|} = |x-1| \lim_{n \to \infty} \frac{n}{3(n+1)} = \frac{|x-1|}{3}.$$

Thus, K = 1/3 in Theorem 9.10, so the radius of convergence is R = 1/K = 3. The power series converges for |x - 1| < 3 and diverges for |x - 1| > 3, so the series converges for -2 < x < 4. Notice that the radius of convergence does not tell us what happens at the endpoints, x = -2 and x = 4. The endpoints are investigated in Example 5.

What Happens at the Endpoints of the Interval of Convergence?

The ratio test does not tell us whether a power series converges at the endpoints of its interval of convergence, $x = a \pm R$. There is no simple theorem that answers this question. Since substituting $x = a \pm R$ converts the power series to a series of numbers, the tests in Sections 9.3 and 9.4 are often useful.

Example 5 Determine the interval of convergence of the series

$$\frac{(x-1)}{3} - \frac{(x-1)^2}{2 \cdot 3^2} + \frac{(x-1)^3}{3 \cdot 3^3} - \frac{(x-1)^4}{4 \cdot 3^4} + \dots + (-1)^{n-1} \frac{(x-1)^n}{n \cdot 3^n} + \dots$$

Solution

In Example 4 we showed that this series has R=3; it converges for -2 < x < 4 and diverges for x < -2 or x > 4. We need to determine whether it converges at the endpoints of the interval of convergence, x = -2 and x = 4. At x = 4, we have the series

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{(-1)^{n-1}}{n} + \dots$$

This is an alternating series with $a_n = 1/(n+1)$, so by the alternating series test (Theorem 9.8), it converges. At x = -2, we have the series

$$-1 - \frac{1}{2} - \frac{1}{3} - \frac{1}{4} - \dots - \frac{1}{n} - \dots$$

This is the negative of the harmonic series, so it diverges. Therefore, the interval of convergence is $-2 < x \le 4$. The right endpoint is included and the left endpoint is not.

Series with All Odd, or All Even, Terms

The ratio test requires $\lim_{n\to\infty} |a_{n+1}|/|a_n|$ to exist for $a_n=C_n(x-a)^n$. What happens if the power series has only even or odd powers, so some of the coefficients C_n are zero? Then we use the fact that an infinite series can be written in several ways and pick one in which the terms are nonzero.

Example 6 Find the radius and interval of convergence of the series

$$1 + 2^2x^2 + 2^4x^4 + 2^6x^6 + \cdots$$

Solution

If we take $a_n=2^nx^n$ for n even and $a_n=0$ for n odd, $\lim_{n\to\infty}|a_{n+1}|/|a_n|$ does not exist. Therefore, for this series we take

$$a_n = 2^{2n} x^{2n},$$

so that, replacing n by n + 1, we have

$$a_{n+1} = 2^{2(n+1)}x^{2(n+1)} = 2^{2n+2}x^{2n+2}$$

Thus,

$$\frac{|a_{n+1}|}{|a_n|} = \frac{\left|2^{2n+2}x^{2n+2}\right|}{|2^{2n}x^{2n}|} = \left|2^2x^2\right| = 4x^2.$$

We have

$$\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = 4x^2.$$

The ratio test guarantees that the power series converges if $4x^2<1$, that is, if $|x|<\frac{1}{2}$. The radius of convergence is $\frac{1}{2}$. The series converges for $-\frac{1}{2}< x<\frac{1}{2}$ and diverges for $x>\frac{1}{2}$ or $x<-\frac{1}{2}$. At $x=\pm\frac{1}{2}$, all the terms in the series are 1, so the series diverges (by Theorem 9.2, Property 3). Thus, the interval of convergence is $-\frac{1}{2}< x<\frac{1}{2}$.

Example 7 Write the general term a_n of the following series so that none of the terms are zero:

$$x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+\frac{x^9}{9!}-\cdots$$

Solution

This series has only odd powers. We can get odd integers using 2n-1 for $n \ge 1$, since

$$2 \cdot 1 - 1 = 1$$
, $2 \cdot 2 - 1 = 3$, $2 \cdot 3 - 1 = 5$, etc.

Also, the signs of the terms alternate, with the first (that is, n = 1) term positive, so we include a factor of $(-1)^{n-1}$. Thus we get

$$a_n = (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!}.$$

We see in Chapter 10 that the series converges to $\sin x$. Exercise 24 shows that the radius of convergence of this series is infinite, so that it converges for all values of x.