Differential Equations - Introduction to Numerical Methods

Professor:

Dr. Joanna Bieri joanna_bieri@redlands.edu

Error in Eulers Method

Examine the error for the solutions that we found in the last class:

$$\frac{dy}{dx} = e^{x^2} \quad y(0) = 1$$

- 1. How much were we reducing *h* each time? What do you expect your ratio of errors to be based on how you are reducing *h*?
- 2. Calculate the approximate error by subtracting the approximations you can use the numbers you wrote into the last worksheet, or use the Python code I provided. Fill in the table below. Recall that

$$ERROR \sim |y_h - y_{\frac{h}{10}}|$$

h	Error in	Ratio of
	y(1)	errors
.1	——-	
.01		
.001		
.0001		

Here I am only asking for the approximate error because we don't know the real solution.

- 3. Answer the following questions:
 - Did your ratio of errors reduce as expected?
 - Is your approximation converging to a solution?
 - For the largest h value that you calculated, about how many decimal places of accuracy do you have?

Repeat the steps 1-4

$$y' = x^2 - y^2 \qquad y(0) = 1$$

h	Error in	Ratio of
	y(1)	errors
.1	——-	——-
.01		
.001		
.0001		