Differential Equations - Notes

Professor:
Dr. Joanna Bieri
joanna_bieri@redlands.edu

Office Hours:

Please remember to check the class website for office hours, homework assignments, and other helpful information.

Ordinary Differential Equations - Day 17

Today we shift our attention to a slightly different type of problem. Instead of being given initial conditions, we will

consider the case of boundary conditions.
Endpoint problems

So far we have talked a lot about Initial Value Problems
(IVP)

Y + o)y + q(z)y = f(x)
GIVEN:

y(a) =b1, y'(a)=0bo

Here we are given information about the value and the
slope at one point. In general IVPs have nice solutions be-
cause it is fairly easy to apply conditions at a single point.

Today we will change our focus to talk about Boundary
Value Problems (BVP). The only change is in the extra con-
ditions given.

Y+ p(@)y + q(z)y = f(x)
GIVEN:
y(a) =b1, y(c) =bo

These are actually much more complicated and more often
than not, don’t have a solution! Why? Well think about
the types of functions that we have been getting as solu-
tions, for example y = e®. Once we pick a location that it
goes through on one end y(a) = by there is one and only
one point that it can go through at © = ¢. So if we didn’t
happen to perfectly pick y(c) = by then we won’t get a
solution.

EXAMPLE:
y'+4y=0

y(0) =0, y(r)=0

This is just a linear constant coefficient homogeneous ODE
so we solve it just like normal! Consider the characteristic
equation 72 + 4 = 0 then we find r = £2i so

y(x) = Asin(2z) + B cos(2x)

Now let’s apply the given conditions. First y(0) = 0 so
Asin(0) + Bcos(0) = B =0
then
y(r) = Asin(27) =0=0

Because sin(0) = sin(27) = 0 we are never able to find a
number for the constant A. This means solutions are not
unique and any function y = A sin(x) satisfies the BVP.

EXAMPLE:

y'+4y =0
y(0) =0, y(1)=0

This is the same problem again, I just changed on of the
boundary conditions! So we have

y = Asin(2z) + B cos(2z)

and applying the first condition still gives B = 0. Now let’s
apply the second condition

y(1) = Asin(2) =0

well this means that A = 0 and our only solution is the
trivial solution y = 0. Actually for most boundary con-
ditions we would pick, this BVP would only have a trivial
solution

BVPs usually have these types of problems!! More often
than not they have trivial solutions. So what we do is ask a
different mathematical question! Given a set of boundary
conditions, which ODEs would have a non-trivial solu-
tion? This leads us to the idea of an Eigenvalue Problem
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Eigenvalue Problem

The general form that we will consider for our Eigenvalue
Problems is

y" 4+ p(x)y + Aq(x)y
y(a) =0, y(c)

Notice here that we are only looking at homogeneous prob-
lems with homogeneous boundary conditions. These do
get more complicated that what we will see in this class!
The new parameter \ is called the eigenvalue. Part of our
goal in solving these types of problems is to find the eigen-
value(s). Let’s jump in a look at an example.

=0
=0

EXAMPLE:

y' +Ay=0
y(0) =0, y(L)=0

Where we assume L > 0. Let’s work through the solution
to this second linear homogeneous constant coefficient
BVP.

First we look for a general solution by solving the charac-
teristic equation

r=+VA

So how we write our general solution depends on the val-
ues of lambda! What are all the possibilities? If A < 0
then we get real distinct roots, if A = 0 then we get real
repeated roots, and if A > 0 then we get imaginary roots.
We can’t rule any of these cases out at this point so we will
consider each of them independently:

24+ X=0,

A A<O

Here we will let A\ = —a? to force A < 0 and make the
square root go away. We will undo this later. With this we
find r = +a and get our general solution

y=c1e"” + coe”**
Now we will apply the boundary conditions and see what
happens:

y(0)=c14+c2=0, so ¢ = —ca

y(L) = cre®t 4 coe™ =0, so ¢ = —cpe 2k

cy = 626_2aL
This means that either e=2% = 1 meaning that a = 0
which is not allowed because we already said that A < 0
not equal zero, or ¢o = 0, which means ¢; = 0 and our
only solution is the trivial one y = 0.

So our conclusion is that we cannot find nontrivial solu-
tions to this BVP for the case of A\ < 0!

B.A=0
Here we will let A\ = 0 and we find r = 0 and get our gen-
eral solution

Yy =cC1+ cx
Now we will apply the boundary conditions and see what
happens:

y(0)=c1 =0
y(L) =c2L =0

This means that either L = 0 meaning we strangely join up
our boundaries, aka we shrink our domain down to zero,
no thanks, or ¢c; = 0 and again our only solution is the
trivial oney = 0

So our conclusion is that we cannot find nontrivial solu-
tions to this BVP for the case of A = 0!

C.A>0
Here we will let A = a? and we find r = 4ai and get our
general solution

y = ¢ sin(az) + ¢ cos(ax)

Now we will apply the boundary conditions and see what
happens:

y(0) = ¢15in(0) + ca cos(0) = co =0
y(L) = ¢y sin(aL) =0

This means that either co = 0 meaning that again our only
solution is the trivial one y = 0, or sin(aL) = 0. BUT
WAIT! This is okay! We can allow sin(aL) = 0. This ac-
tually works for a lot of cases, anytime a. = nw. We just
found values of A that would give unique solutions! We get

. : . 2
nice solutions anytime a = "% or when A = (%%)".

This means that nontrivial solutions exist and we say solu-
tions are given by

EIGENVALUES

with the associated

EIGENFUNCTIONS

. (nﬁx)
=sin | —
yn L

What does this solution mean? How can this possibly apply
to the real world?
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Real World Eigenvalue Problem

The equation for a vibrating or whirling string between
two fixed points is given by

Ty" + pwzy =0

where T is the tension of the string, p is the linear density,
and w is the angular speed. Imagine a jump rope being held
and spun and a circle by two people, T is how tightly they
are pulling against the rope, p is the material weight of the
rope, and w is how fast their hands are spinning. Okay, we
can actually rewrite this equation to be in exactly the form
of the equation we just solved

2
n , PYW
—y=0
Yy + T Y
and our boundary conditions just say that each person, one
at = 0 and the other at z = L, is holding the rope on the

same level and we are calling that level our zero.

y(0) =0, y(L)=0
Our solutions were
nm\ 2
e
L
Yn = 17

So given a string, aka specifying a length L and a density p,
and holding it between two people, aka specifying a tension
T, our eigenvalues specify an angular speed

pw? (n7r>2
L \L
solving for w

Tnrm
p L

So does this mean that only certain angular speeds result
in a solution? Well, yes!

Think about the jump rope! Go get ajump rope and a friend
if you can... because we can make this work in real life.

Now start spinning the rope like you would to jump. You
see that you need to be spinning at a specific frequency to
get the nice arcing rope. This frequency is

_ /T
-

and our associated function is

=en()

w1

Graphing this we see one arc fitting between z = 0 and
r=1L

Now lets start spinning faster. What happens? The solu-
tion falls apart for a second and the rope looks like a mess
until you hit on the next frequency and get two really nice
arcs! The frequency is

- 2mVT
= I/

and our associated function is

= sin 2
Y1 = I

Graphing this we see two arcs fitting between z = 0 and
x = L, where for the graph Iset L = 4.

w1
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WOW! It really works!

We also see these types of things in Quantum Mechanics.
The allowable energy levels of the wave function have to
do with eigenvalues to the wave equation.

Back to Eigenvalue Problem

Let’s work together to solve some slightly more compli-
cated cases.

YOU TRY:

y' +Ay=0
Given
y(0)=0, y'(L)=0

Here we have not changed the ODE we just changed the sec-
ond boundary condition to a slope condition. Here are your
steps:

1. Solve the characteristic equation for r *
2. Consider the possible cases for \ 2

3. Apply the boundary conditions to each case and look
for a nontrivial solution. 3

1Show that you can do this and get r = +v/—X
X< 0,A=0,and X >0

2
3Here you should find that A = (W) and y,, = sin(v/Ax)

In general to find your eigenvalues you end up solving a
system of two equations for two unknowns

0[1()\)01 + 51()\)C2 =0

and
ag()\)cl + BQ()\)CQ =0

where here the « and 3 functions are what you get after
you plug your boundary conditions in. For our first exam-
ple this was a1 (A\) = sin(0) and a3(\) = sin(L) Writing

this in matrix form
B
B2(N) co | 0

ai(N)
az(N)

where at least one of ¢; or ¢, is nonzero. For this to be the

case the determinant must be zero

041(>‘)/B2(/\) - 0420\)51(/\) =0

Seeking values of A that solve this equation gives us our
solutions.

In the last YOU TRY example we found

y = ¢y sin(ax) + ¢o cos(ax)
Applying the boundary conditions gives

¢15in(0) + ca cos(0) =0
acy cos(al) — acysin(AL) =0
from the matrix form above we can write this as
—asin(0) sin(aL) — acos(0) cos(al) =0
and simplifying we find
—acos(al) =0

which only gives nontrivial solutions when

3 2n —1
o =T 3T _Bn-
2° 2 2L
These problems can get much harder! In fact sometimes
we can’t even find a closed form solution for our eigenval-
ues. Here is a tough example.
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EXAMPLE:

y' + =0, y(0)=0, y(1)+y(1)=0

Here we have a mixed boundary condition at x = 1. First
the ODE is the same as before and we know that we will
only have positive eigenvalues, meaning that we can write
A = a? and we have general solutions of

y = 1 sin(az) + c5 cos(ax)
Now we apply the boundary conditions”
acy cos(0) — acy sin(0) =0
¢y sin(a) + ¢ cos(a) + acy cos(a) — a2sin(a) =0
gathering ¢; and ¢, gives
c1(sin(a) + acos(a)) + cz2(cos(a) — asin(a)) =0
Using the trick of the zero determinant we can write
a cos(0)(cos(a)—asin(a))+asin(0)(sin(a)+acos(a)) =0

We need to simplify this!

acos(a) — a?sin(a) = 0
cos(a) —asin(a) =0
cos(a) = asin(a)

1 sin(a)

a cos(a)

= tan(a)

So our eigenvalues are given by the solution to
1
— = tan(a
-~ — tan(o)

we would have to solve for these numerically.

We can also see them on the graph as the intersection
points between the line y = X and y = tan(z).

This gives A ~ 0.86, \ ~ 3.426, A ~ 6.437...

The Moral(s) of the Story

+ Boundary Value Problems (BVP) are fundamentally
different than Initial Value Problems (IVP). Speci-
fying the conditions on two boundaries makes our
ODEs much less likely to have a nontrivial solution.

+ When solving BVPs we often refocus our attention on
the associated eigenvalue problem and ask the ques-
tion "For what values of A would our BVP have a non-
trivial solution?”

+ We always solve these problems by doing the follow-
ing

1. Solve the characteristic equation for r in terms
of lambda and identify the possible cases for
when r is real distinct, real repeated, or com-
plex.

2. Consider each of the cases above separately by
writing down the general solution and applying
the boundary conditions.

3. Each time you apply the boundary conditions
you are looking for possible values of ), or if
you set A = a? then you look for values of a,
that give you a nontrivial solution.

4. You final solution is a set of EIGENVALUES and
their associated EIGENFUNCTIONS.
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