Differential Equations - Notes
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Office Hours:

Please remember to check the class website for office hours, homework assignments, and other helpful information.

Ordinary Differential Equations - Day 18

We have been focusing on how to solve non-homogeneous equations, but have not talked much about what all of this
means physically. Today we consider applications for non homogeneous equations.

Mechanical Vibrations

Many physical systems can be modeled using the Damped
Spring Mass Equation

mz” + cx' + kx = f(t)

where z(t) is the displacement from equilibrium at time ¢,
m is the mass of the moving part, ¢ is the damping coef-
ficient, and k is the spring constant for the vibration. FYI
- in physics we sometimes represent derivatives with dots
over the z’s, just in case you run into that notation it looks
like

mi + ct + kx = f(t)

This equation can actually model a lot more than just our
simple spring system and we will talk more about this later.
For now, let’s consider what these terms tell mean in the
real world. We will break this up into two cases

¢ f(x) = 0-FREE MOTION
¢ f(x) # 0 - FORCED MOTION

Case 1 - Free Motion - Homogeneous

Let’s first put the equation in more standard form and
divide by m
k
"+ S+ D=0
m m
combining constants gives
2 +pr’ +wr=0
The characteristic equation for our homogeneous system
is
P 4pr+w=0
use the quadratic equation to find
T = 7:‘25\/]?2_40.)

So solutions depend on the form of the thing under the
square root!

1. p?—4w > 0or p? > 4w we would expect real distinct
roots. Physically this means that the damping force
is greater than the spring force!

2. p?> — 4w = 0 or p?> = 4w we would expect real re-
peated roots. Physically this means that the damping
force is equal to the spring force.

3. p? — 4w < 0or p? < 4w we would expect complex
roots. Physically this means that the damping force
is less than the spring force.

Now we can thing about the solutions for each of these
cases:

OVER DAMPED: p? > 4w

In this case we have real distinct roots so our solutions take
the form

x(t) _ cle%pt-l—és/pz—élw + 026%;%—%\/;1)2—&%

or

z(t) = [cle%\/m + @e’émt} J

What do we expect from these solutions? Well notice how
no mater what p is, we have that damping term in the lead-
ing negative exponential. This means that our solutions
are decaying toward zero. How fast they go to zero depends
on how much damping there is in the system. If p is very
large, then the positive term £/p? — 4w keeps the solu-
tion above zero for longer. Imagine in a physical system, if
you are completely resisting motion then the spring with
just slowly pull you back to equilibrium, but you will resist
all the way!
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Imagine a car with shocks that are too strong. You stand
on the bumper and jump off, but rather than shifting right
back into place, it SLOWLY returns to position. There will
be no oscillations here. As an example we can graph the
solutionforp =4andw =1

»

CRITICALLY DAMPED: p? = 4w

In this case we have real repeated roots so our solutions
take the form

pt

z(t) = (c1 +cat)e™ 2

What do we expect from these solutions? Only decay! The
solutions should go quickly to zero when the oscillations
are critically damped. For our car example, this is the best
case scenario. You just off the bumper and the car quickly
returns to equilibrium without oscillations. Here is an ex-
ample graph for whenp =4andw =4

»

Notice how the solutions go to zero much more quickly
here.
UNDER DAMPED: p? < 4w

In this case our roots are complex. We have that p? — 4w <
0 so we will write roots as

—p i
= — 4+ —/—p?2+4
r 9 5 P+ 4w

where I factored out the negative sign to get the ¢ in front
of the square root. Our solutions are

x(t) = e % (Cl sin (;m) + ¢4 cos (;m))

Now what do we expect for our solutions? Here we see the
solutions are decaying thanks to the e~?*/2 out front, but
we also see oscillations. In this case your spring is stronger
than the damping so oscillations happen but are slowed
down over time. Think about a really old car when the
shocks start going out. If you jump off the bumper it will
bounce for a while but eventually slow down. When your
shocks go out the go from being critically damped, damp-
ing out oscillations as quickly as possible, to being under
damped and bouncing. Notice here that this is a very fine
line! Here is an example graph for whenp = 1 and w = 10

»

As you can see the roots of the characteristic equation tell
us everything about the behavior, or characteristics, of the
physical system!

Case 2 - Forced Motion — Nonhomogeneous

Now we will consider what happens when there is some
forcing in the system. For a real life example think back
to the car from the homogeneous case. Now instead of
jumping off and letting the system respond naturally you
bounce on the bumper, keeping some forcing on the sys-
tem throughout time. One good example is when people
install hydraulics! They are supposed to "force” the car to
keep bouncing!

For our discussion here we will keep it simple and talk
about Undamped Forced Oscillations. This means that p =
0 giving us the equation

2" +wz = f(x)

Here it is easy to solve the characteristic equation. In fact
we have solved this one SO MANY TIMES! We find that
r = #++/—w. Here notice that we only have two cases w = 0
meaning that there is no spring or w > 0 meaning there is
a real life spring. Let’s look at the more interesting case
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of having a spring. In this case we would have imaginary
roots and solutions to the homogeneous equation would be

Te = c1 sin(y/wt) + o cos(v/wt)

Now because we have forcing we need to find the nonho-
mogeneous solution. Here there are two possible cases. For
MUC we make a guess for x,, based on the form of f(¢) and
either x,, does not duplicate our homogeneous solution
and we are fine, OR z,, does duplicate the homogeneous
solution and we need to multiply by ¢ to get an linearly
independent guess.

No Duplications

Here lets assume that f(t) = Fy cos(at) where a # /w in
this case we would guess

z, = Asin(at) + B cos(at)
taking derivatives and plugging this into our ODE we find
A(1 — a?)sin(at) + B(1 — a?) cos(at) = Fy cos(at)
Solving gives

Tp 702 cos(at)

:1—(1

So our solutions would be

z(t) = c1 sin(v/wt) + ¢ cos(vwt) + 1 foaz cos(at)

Here the forcing is changing the oscillations making them
either faster or slower. Here we can graph the case of
w=1,a = 2andlet F; = 0 or F; = 1 to see the dif-
ference between the forced and unforced cases.

»

Here the red solution is the homogeneous unforced solu-
tion and the green solution is forced solution. Notice how
the green solution oscillates differently but it’s amplitude
does not grow or decay.

Duplications

Now lets assume that f(t) = Fp cos(at) where o = y/w in
this case we would guess

z, = Atsin(v/wt) + Bt cos(y/wt)

Notice how I had to multiply by ¢ to remove the duplication!
Here I can plug in my guess and solve for the coefficients
to find

tsin(y/wt)

Fy
Ty =——
Povw
well this changes everything! Now what is happening to
our solution?

Fo
2w
The nonhomogeneous term grows as time increases. Here

is a graph for the case of w = 1, « = 1 and let Fy = 0 or
=1

x(t) = 1 sin(ywt) + o cos(vVwt) + tsin(y/wt)

»

This effect is called resonance. Think about when you were
a kid swinging on a swing. If you just randomly swing your
legs you lose speed pretty quickly. But, if you swing your
legs at just the right frequency... what happens... your
oscillations grow because you are forcing them at the res-
onant frequency!

This is all fun and games if you are on a swing, but the
idea of resonant frequency can have serious implications.
Think about what would happen if a buildings natural reso-
nant frequency exactly matched the frequency of an earth-
quake!

One very famous example is the Tacoma Narrows bridge
where the frequency of the gusting winds exactly matched
the resonant frequency of the bridge. What do you think
happened? Yeah, the bridge broke apart and fell down in
a wind storm! Now given, this bridge is much more com-
plicated than our simple one dimensional equation... but
that’s why you should take Partial Differential Equations!
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The Moral(s) of the Story

+ There are really interesting implications for what the
nonhomogenous solution does in realy life physical
systems.

+ The characteristic equation really does tell you about
the characteristics of the physical system!

+ Resonance is an important physical phenomenon.
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