Differential Equations - Notes

Professor:
Dr. Joanna Bieri
joanna_bieri@redlands.edu

Office Hours:

Please remember to check the class website for office hours, homework assignments, and other helpful information.

Ordinary Differential Equations - Day 3

Now that we can solve differential equations by integration and plot slope fields for first order equations, we will start
to consider more complicated cases. But, before we do this, we will investigate the idea of whether or not solutions even
exist for a given differential equation and if they are unique. This is important because why bang your head against the
desk trying to solve an ODE that has no solution!? Then we will learn a really nice solution method that works on both

linear and nonlinear first order equations.
Existence and Uniqueness

Given and ODE, how can we know whether or not a so-
lution exists. If we can find a solution, how can we know
that it is the only one? Let’s look at a few examples to mo-
tivate why this is important.

EXAMPLE:
Solve the ODE
dy 1
L y0)=0
i 1)
This is a First order, linear, ODE of the form % = f(z) so

we can solve it just by integrating like we did yesterday.

1
y(x) = —dx=In|x|+¢
x

So we are able to find a general solution. Now solve for the
particular solution:

y(0)=0—=0=1In|0| +¢

What is the problem here? That right! the natural log is
undefined at zero! This means there is no solution to this
ODE with the given initial conditions. How could we have
noticed a problem right from the beginning? HINT: Look
at the ode and the initial condition, see any issues?

EXAMPLE:

Consider and example from Torcelli’s Law, which models
water leaking from a bucket with a hole in it. The differ-
ential equation tells us how the height of the water in the
bucket changes as water leaks out and the initial condition
tells us how much water was in the bucket to start. For our
example

dy B
J—C\/ﬂy(o)—o

This is a first order, nonlinear, ODE which we will learn how
to solve next week! It has more than one working solution:

y(t) = (?)2 and y(t) =0

Plug these in and test that they satisfy both the ODE and
the initial condition. So which one is the right solution?
BOTH are technically correct. The issue comes with our
initial condition! Here we are saying that we walked up to
the bucket and saw no water in the bucket leaving us with
two possible conclusions. Either the water already leaked
out before we got there OR there was never any water in
the bucket to begin with. Our initial condition fails to give
us enough information!

In general, for physical systems, when no solutions exist
that means that your equations or initial conditions were
probably set up wrong. When you have non-unique solu-
tions this can be physically realistic, but you might want
to check how you set up your problem.

We can actually tell, without solving the ODE, whether or
not solutions exist and are unique. We use Theorem 1 on
p-23 to help us with this.

Theorem 1 Suppose that both the function f(x,y) and its par-
tial derivative D,, f (x, y) are continuous on some rectangle R in
the xy-plane that contains the point (a,b) in its interior. Then,
for some open interval I containing the point a, the initial value

problem
dy

% = f(«f,y)7 y(a) =b

has one and only one solution that is defined on the interval I.

For those of you who have had Real Analysis, this should
make sense and you can read about proofs for this theo-
rem in the Appendix of our book! For everyone else, let’s
unpack what all of this means in more informal language.
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+ We can actually show that as long as f(x,y) is de-
fined in a range around the initial condition, we
know that at least one solution will exist.

« Ifboth f(x,y) and % are defined in a range around
the initial condition, then we are guaranteed a
unique solution to the ODE.

+ The range over which we might expect solutions to
exist and be unique is called the interval of validity.
We can find this interval by drawing a number line
and marking all the locations in « where the f(z,y)
are undefined. Then mark on that line where your
initial condition is defined. Draw an interval that in-
cludes your initial condition but does not contain any

discontinuities.
EXAMPLE:
Should we expect a unique solutions to the ode:
dy 1
2= y0)=0
7 = o YO

Here we need to check what the function f(z,y) on the
RHS does at, and near, the initial condition. Plugging in
z = 0 and y = 0 we see that the RHS is undefined. This
means that there is no solution to the ODE. solutions do
not exist. If instead the initial condition had been y(3) = 0
then we see the RHS is defined and we would at least expect
a solution where the interval of validity is (0, co) which im-
plies that if we are looking “backward” we would need to
be careful of this discontinuity at 2 = 0

EXAMPLE:
Should we expect a unique solutions to the ode:

dy B

First we check that the RHS, f(z,y), is continuous at the
initial condition z = 0 and y = 0, which it is! This tells me
that we can expect at least one solution, but maybe more
than one. Next we take the partial derivative with respect
to the dependent variable:

0 1
S =5
oy vy 2,y
Now consider the initial condition z = 0 and y = 0. Here
we see that the partial derivative has a discontinuity at the

initial condition, so we are not guaranteed unique solu-
tions. Solutions exist but are non-unique.

EXAMPLE:
Should we expect a unique solutions to the ode:

dp
P
First you should rewrite it in standard form with all the
variables on the RHS and only the derivative on the LHS.
dp t—1
- p

—t—1, p(0)=1

Now consider the initial condition ¢ = 0 and p = 1. When
plugging into f (¢, p) we see that there should exist at least
one solution. Now considering the partial derivative with
respect to the dependent variable

9 (t—l) _—(t=1)

o\ p p?
Here we see that for the given initial condition we have
no issues with discontinuity so we would expect a unique
solution to this ODE. Here the interval of validity would be

(0, 00) and we would need to be careful of solutions as they
approachp =0

EXAMPLE:
In the above example
dp t—1
dt  p
what if our initial condition were y(1) = 0? In this case we

need to be more careful and instead consider limit at both
y and t go to the initial condition. In the case of existence

t—1
m _—
t—=1 p—0 p

because they are both first order they approach zero at the
same rate and this limit exists, so we would expect at least
one solution. However if we consider the limit of the par-
tial derivative
—(t—1
fim ——1)

t—1 p—0 p2

this is undefined, or infinite, because the denominator goes
to zero faster than the numerator. Thus our solutions will
be non-unique.

Separable First Order ODEs

We can use separation on any first order ODE of the form

% = f(z) - g(y)

Sometimes it takes some algebra to get your solution into
this form, but if you can, then separation will work. This
is a method that you may have seen in Calc II. Here is the
general idea

1. Classify the ODE!

2. Gather variables on opposite sides:
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3. Integrate both sides:

4. When possible, solve for y

This method works for both linear and nonlinear ODEs as
long as the integrals are doable. For a highly nonlinear
ODE sometimes it is impossible to write your solution as
y = f(z) because you cannot solve explicitly for y.

EXAMPLE:
Solve the ODE using separation:

dy 3

2 = +

dx yTy

First classify... this ODE is first order, linear, and it can be
written in separation form.

dy 3
— = 1
o y(x® +1)
Let’s do separation:
d
—yy = (23 4+ 1)dx

1
ln|y\:1m4+m+c

y(r) = eiv'tate — gizttwoe _ gogelte

So our solution is y(z) = Aei®*+e. Is this a general or
particular solution? How do you know? NOTE: We will do
that trick with pulling the constant out of the exponent all
the time in this class!

EXAMPLE:
Solve the ODE using separation:

dy 3
— =2yt

dz Y
Sneaky professor! This is a trick! It looks A LOT like the
previous example but this equation is not separable! Here
there is not way to separate out the y and « variables on
the RHS into two separate but multiplied functions.

1

YOU TRY:

1. Check existence and uniqueness. If solutions exist,
solve by separation:

d

% = —6xy, y(0) =7
Helpful hint: I usually leave any constants or nega-
tive signs on the RHS.

2. Are there any values of the initial condition where
we would expect problems with existence? If solu-
tions exist for the given initial condition then solve
by separation:

dy 4 —2x
Vo 0 =1
de  3y>-—5’ y(0)
3. Solve by separation
d
% +2zy =0

You can always check your answers ! by substitution.

The Moral(s) of the Story

« It is always worth it to glance at existence and
uniqueness! In the real world this not only saves
you a lot of trouble of seeking a solution when it
does not exist, but I can also highlight problems in a
model. If you are modeling a physical situation with
an ODE solutions should exist! If you find that solu-
tions are non-unique, then either there are problems
with your model or maybe, like Torcelli’s Law, there
is a good explanation for the non-uniqueness.

Existence and uniqueness are highly dependent on
the initial condition. If you see that your RHS could
become undefined it is a good idea to include an in-
terval of validity with your solution, since you want
to remember where the solution”fails”.

+ Separation is a straight forward solution method as
long as the integrals are doable. Alway check if your
first order equation can be put in the form

dy

— = x) -

g = T@) - 9)

+ Separation works on nonlinear and linear equations,
but you need your equations to be first order.

1. There should be no existence or uniqueness problems because f(x,y) is well defined everywhere (—oo, 0o). The solution is y(z) = Te—327

2. We would have existence problems if the denominator goes to zero, of where y = :I:\/g . The solution is y3 — 5y = 4z 4+ x2 — 4.

2
3. The solutionis y = Ae™*". We are not giving initial conditions so our final answer is the general solution.
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