BESSEL EQUATIONS AND BESSEL FUNCTIONS

Bessel functions form a class of the so called special functions. They are im-
portant in math as well as in physical sciences (physics and engineering). They
are especially important in solving boundary values problems in cylindrical coordi-
nates. First we define another important function: the Gamma function which is
used in the series expansion of the Bessel functions, then we construct the Bessel
functions J, and Y.

1. THE GAMMA FUNCTION

The Gamma function (also called Fuler’s integral) is the function defined for
x> 0 by

oo
I'(x) :/ e *s"lds .
0

The improper integral defining I" is convergent for x > 0. To see why, note that for
every x > 0,

e~ S x—1

lim ———=0.
S—00 372

Thus there exists M > 0 such that e *s*~1 < s72 for s > M. This implies that

/efssmfldsg/ d—jzi
M M S M

Also for s € (0, M), e=*s*1 < s*~! and

M M x s=M x
s M

/ e 55" lds < / s*tds = [} =—.
0 0 T Js=0 T

We have then
o fe'e) M
1 M*=
/ e %" lds = / e *s% lds + / e s lds < — + .
0 M 0 M €

This shows that I'(x) is well defined for = > 0.
The most important property of the Gamma function is given in the following
lemma.

Lemma 1. The function I satisfies the following

'z +1) =al(x), Y >0.

Proof. The proof is simply an integration by parts
A A A
/ e %s%ds = [—e_ssw]? + x/ e %5 1ds = x/ e *s" lds — A%e A .
0 0 0
By taking the limit as A — oo, we get I'(x + 1) = aT'(z)
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It can be shown that I' has derivatives of all orders for > 0 and that I' has
a unique extremum (global minimum) on the interval (0, co). The minimum is
reached at a number xy € (1, 2) and I'(z¢) < 1. Furthermore, I' satisfies

lim I'(z) =00, and lim I'(z) =00
r—0+ T—r00

Graph of I'(x) over (0, )

We can use the fundamental property to extend I' as a smooth functions to
R\{0,—1,—2,---} (the whole real line except 0 and the negative integers). First
we extend I' to the interval (—1, 0) by defining

I(r) = I'(z+1)

x
(note the above definition makes sense since x+1 € (0, 1) and T'(x+1) is defined by
the integral). Once, I"is defined on (—1, 0), we extend it to the interval (—2, —1) by
using the same property. More precisely, if I' is defined on the interval (—j, —(j —
1)) with j € Z*, then we extend it to the interval (—(j + 1), —j) by using the
fundamental property. We have in particular that lim, ,; |T'(z)] = oo for k =
0, =1, =2, ---
Now we compute some values of the Gamma function.

(1) :/ e fds=1.
0

By using the fundamental property of I', we get easily its values at the positive
integers.

for z e (-1, 0)

I'(n+1)=nl Vn e Z*
The Gamma function appears as an interpolation of the factorial function.
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Graph of I'(x)

/\

To compute I'(1/2) we use the value of the Gaussian integral / e dt = V)2

0
(you have probably encountered this integral in Multivariable Calculus (MAC2313)
or in Prob./Statistics class). In the following calculation, we have made the substi-

tution ¢ = /s.
1 > —s_—1/2 R
r({=|= e %5 Hids =2 e Vdt=+/m.
2 0 0

The Gamma function satisfies many other identities such:

Reflection formula : MNz)l'(1—2) =
2x—

(x#0,+1,£2,--)

sin

Duplication formula : I'(2z) = \/7?11“(:13)F (:17 + ;) (2x #0, —1, =2,--)
2. BESSEL’S EQUATION
Bessel’s equation of order v (with « > 0) is the second order differential equation
(1) 2y +ay’ + (2 —a?)y =0
In order to find all solutions we need two independent solutions. We are going to

construct the independent solutions for = > 0.

2.1. Construction of a first solution. Note that = 0 is a singular point of
the equation. More precisely, it is a regular singular point (see your notes from the
first differential equations class, MAP2302). For such differential equations, we can
use the method of Frobenius to construct series solutions. We seek a (formal) series
solution

oo o0
(2) y=a" Z cpz’ = Z cpzttT
k=0 k=0
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of equation (1), with ¢, € R, and ¢o # 0. The substitution of this series and its
(formal) derivatives into equation (1) gives

z? Z(k + ) (k47 —1)cpat T2 o Z(k + 1Yot 4 (22 — a?) Z cpahtT =
k=0 k=0
We rewrite this as

> (k+r)(k+r— et + Z k+r)cpattT 4+ Z cpa T - Z ozt =0
k=0 k=0 k=0 k=0

then as

Z(k +r)(k+r—1)cpatt + Z(k +r)epzh T + Z Ch_2a™ T — Z et =
k=0 k=0 k=2 k=0

After grouping the like terms and simplifying, we obtain

o0
(r? — a®)cox” + ((r + 1) — a®)erz™™ + Z [((r+k)*> —a®)cp + cp—z] 2" =0
k=2
In order for this series to be identically zero, each coefficient must be zero. We have
then

(r? —a) =0,
(r+1 )01—0
((T+]) )C]+Cj—2:07 ]:2a 3a 4a

Since ¢ # 0, then the first equation implies that » must satisfy
r?—a?=0.
This is the indicial equation of the Bessel equation. The indicial roots are
r=a and r=-a.
Consider the case r = a. The second equation becomes
(2a+1)e; =0 = ¢ =0 (since a>0).

For j > 2 the recurrence relation becomes

. —Ciig
(a+.7)27052 C'+C'_2:0 = C:%
( ) J J J ](20{ —i—])
Since ¢; = 0, the above relation gives
—c —es
,:7:0, :7:07 :0’
“ 7 320 +3) “ = 52a+5) er

That is, all coeflicients with odd indices are 0 (coqq = 0). For the coefficients with
even indices, we have

-« —C
2T 52a+2) " 41+a)

4 — —C9 o (—1)200

YT 42a+4)  292)(1+ a)(2+a)
o = —cy (—1)3¢o

6(200+6)  20(3)(1+a)(2+ )3+ a)
A proof by induction gives

(—=1)co
J122(14+a)2+a) - (j+a)’

Coj = j=1 2,3, ---
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A formal solution is therefore

S 2j+a S (_1)jCO 2j+a
= CoiT = v : €z
V=2 = L i ) ey G
We are going to select ¢y and use the Gamma function to rewrite the series solution
in a more compact form. It follows from the fundamental property of the Gamma
function that
IF'j+14+a) =0+a)l({+a)
=(+)(-1+a)l(-1+a)

—(+ta)(-1+a)(1+a)T(1+a).

Equivalently,
. F'j+1+a)
1 2 =T
We select ¢y as
1
©T %aT1ta)

With this choice of ¢q, the particular series solution becomes

U G VAN AT A
Ja(®) _;jlr(j+1+a) (3

This solution is known as the Bessel function of the first kind of order c.
Now we determine the domain where the series converges. Note that

T\ (=1) T\
Tol@) = (3) ;M(2) |

The last series is a power series in (x/2)2. To find its radius of convergence, we can
use the ratio test:

| EDT (AN H2+ )| 1

lim — = lim — . =

imee| (1) (GITG +14a)) imee (J+ DI+ 1+0a)
The radius of convergence is infinite (the power series converges to an analytic
function on R). The function J,(z) is defined for 2 > 0.

2.2. Construction of a second solution. Recall that the indicial roots of the
Bessel equation are r = +a. We have used r = « to construct the solution J,(z).
We can redo the above construction with » = —a. However, this can be done only
if « ¢ ZT. In this case a second independent solution of Bessel’s equation is

s —1)J T 22—
Tal0) =2 oG
Note that J_, is not defined at x = 0. We have
wl_i)r(r)lJr |[J_a(z)| =00 .
The general solution of equation in (0, co) is
y(x) = AJo(z) + BJ o(z)
with A and B constants.
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When o = n € Z7, the situation is a little more involved. The first solution is
o0 > .
(_1)] x\ 27+n
=35 (5
n(®) jg(J]!(] +n)l \2
If we try to define J_,, by using the recurrence relations for the coefficients, then
starting with ¢y # 0, we can get

—Cp —Cp
Co = =
*T202-2n) 4(1-n

—cp (=1D?%co
C4 = =

A4 —2n) 2N -n)(2—n)

. B (_l)n—lco
2(n—1) — (n _ 1)!22(7171)(1 _ n)(2 _ TL) 2.1

At the order 2n however we get

Ocon — Co(n—1) = 0.

This is a contradiction since c(,—1) # 0. Thus, the recurrence relations will not
lead to a series solution.
Another attempt to define J_,, is to define it as

J_p(z) = lim J_,(2).

a—rn
In this case, we get back either J_,, = +J,, and J_,, and J,, are dependent solutions
of the equations. More precisely, we have the following lemma.

Lemma. We have

Proof. For a ¢ Z* (and « close to n), we have

_ -« - (_1)J 25
Jal@) =2 TG 1)

§=0
Recall that lim, ,_, |['(z)| =cc for p=0orp € Zt. Whena —n, (j+1—a)
tends to 0 or a negative integer for j =0, 1, 2,---, (n —1). For such values of j,
the coefficients of 27 in the series above approaches 0:
, (-1

1 , =0.

atin j1221-0T(j + 1 — )
We get then,

I _ N = (71)j 2j
Jon(z) = lm Joa(2) = ]Z;L J2ET(j+1—n)

and after using the fundamental property of the Gamma function we obtain

0 -1 jx2j—n & -1 k+nx2k:+n .
Jon(x) = Z: j]égj_)n(]_n)' = kz_%((k—i—)n)'%w = (=1)"Jn(z) .

Now we indicate how to construct a second independent solution of equation (1)
when a = n. Consider &« = n + ¢ with 0 < € < 1 (hence such o ¢ Z*). The
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corresponding Bessel equation has two independent solutions Jy 1. and J_(, ).
The function Y, . defined by

pte(®) = (=1)"J_(n1e) (@)
Vyie(z) = - (nte)' ™
Since function Y,y is a linear combination of Jy, 4 and J_(,4¢), then Y, is also

a solution of the corresponding Bessel’s equation of order o = n 4 €. We define Y,

as:

Jn+e(37) - (_1)nJ7(n+6) (x)
€
It can be proved that the function Y, is a solution of the Bessel equation of order
n and that Y,, and J, are independent (see for example R.Courant and D. Hilbert,
Method of Mathematical Physics, vol. 2, or H. Sagan, Boundary and Figenvalue
Problems of Mathematical Physics). This solution Y, is called the Bessel function
of the second kind of order n. It can also be proved that

Yo (z) = lg% Yite(x) = lg%

lim Y, (z) = —c0.
z—0t

Another method to obtain a second solution of the Bessel equation in the excep-
tional case is to seek it in the form

y(x) = Jp(z)Inx + Z Cjat .

The coefficients C; are then found by a recurrence relation.
The explicit expression of the Y,,(z) is given below. Its derivation can be found
in advanced texts about special function. For n € Z+, we have

Vo) = Za(@) (143) - T3 et

2) " w2 (il (n+ )]
1 S (n—j—1)
R Z 22j=n (41 ! ’
=0 I
where, for j =0, 1, 2, ---, the constants c; are given by

=0 =1 —1-‘r1 —1+1+ !
Co=VU, ¢t =1, C2 = 9’ G = ) j

and where v is the Fuler constant given by

1 1
v = lim <1+2+~-~‘—lnj) , v~ 0.57721....

j—o0 ]

For n = 0, we have

Yo(w) = 2Ju(a) (v 4 %) - 2 > P

2.3. General solution of the Bessel equation. We summarize the above dis-
cussions in the following theorem.
Theorem. Given the Bessel equation of order a > 0,

$2y// +xy’ + (3;‘2 _ a2>y =0

then we have the followings:
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o If a ¢ Z+ U {0}, the equation has two independent solutions J.(x) and
J_o(x) (Bessel functions of the first kind) and the general solution is

y(@) = AJu () + BJ_a(a) |

where A and B are constants.

o Ifa=n withn =0 orn € Z", the equation has only one Bessel function
of the first kind J,,(x), another independent solution is the Bessel function
of the second kind Yy, (x). The general solution of the equation is

y(x) = AJp(z) + BY,(x) .

3. REMARKS ON BESSEL FUNCTIONS

The expansions of the functions Jy and J; are

n-3 1

= 1)3 2+ x3 x5 z’
ZZ:OJ'(] 1) (3) =3- 22N T BEHE) | enE) T

jl

<.
o

[

The graphs of Jy and of J; resemble those of cosine and sine with a decreasing

Graphs of ‘]o and J1
15 T T T

— 3y

—_ Jl(x)

051 T

amplitude. Notice how the zeros of Jy and .J; behave. Between two consecutive
zeros of Jy there is exactly one zero of J;. The following table lists the approximate
values of the first 9 positive zeros of Jy and J;y

J 1 2 3 4 5 6 7 8 9
Jo | 2.405 5.520 8.654 11.792 14.931 18.071 21.212 24.353 27.494
J. | 3.832 7.016 10.174 13.324 16.471 19.616 22.760 25.904 29.047
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For n large, the n-th zero of Jy is approximately nm — (7/4) and the n-th zero
of Jy is approximately nm + (7/4). It is shown that for x large we have

2 2 3
Jo(z) =~ W/ECOS (x—%) and Ji(z) ~ “ECOS (I—I)

In fact the m-th Bessel function J,, has the following behavior

1
Im(z) = 1/ % cos (gc - WI)W) for = large.

This approximation shows that J,,, has infinitely many positive zeros that tends
to infinity. More precisely, we have following proposition about the zeros of Bessel
functions.

Proposition 1. For every a € R, the positive zeros of J, form an increasing
unbounded sequence. That is, the solution set of the equation

Jo(z) =0, x>0,
forms a sequence

O<zri <2 <3< <Tp <---, with lim x, =00
n—oo

The proof of this proposition is beyond the aim of this course.

1 3 5 2k+1
Fora2:|:§,:|:§,:|:§7-~-,:|: + s

functions. This means that J,(z) can be expressed algebraically in terms of sin

cosz and x. The following proposition gives the expressions of some Bessel functions

with such indices.

-, the Bessel functions J,, are elementary

Proposition 2. We have the following relations

2

Jijo(x) = — —sinx,
2
J_1)2(z) = 5 COST,
2 sin x
J3/0(7) = — ( — oS x) ,
2
J,3/2 W— blnx) .

Proof. We prove the first relation and leave the others as an exercise. Recall that
the Taylor expansion of sinz is

oy
2 (2% +1)!

We need the value of I'(j + (3/2)). We have I'(1/2) = /7 (see section about the
Gamma function). By using the fundamental property of the Gamma function, we
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get
3 1 1 1 VT
].—‘ - == — = — — = -
(3)-r (o) =5 () -5
P(OY Zr (1) 23 (3) - BvT
2 2 2 2 22

() -r(ie)- () -

We prove by induction that for j € ZT,

r<]+3> i+ -1)-3-1

2 2j+1
We can simplify the product of the odd integers above as
(25 + 1) (25 +1)!

(2j+1)(2j —1)---5-3-1=

(2)(25—2)--4-2  2(5)

S8\ (2 + 1)
£ (5+3) = g

Now we use these to show the first relation of the proposition.

i 2 (@) :i'r(ﬁé/z))( >2j+<1/2)
25
\/>Zz2a+1 QZZJFJ?{)?I A

=\/;j§_:0(2j+i)!x2m

Analogous results about the behaviors of the Bessel functions of the second kind
can be obtained.

Hence,
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Bessel functions of the second kind: YO, Y1' Y2

4. SOME PROPERTIES OF THE BESSEL FUNCTIONS J,

The bessel functions satisfy a large number of properties. We limit ourself here
to list the following.

Properties of J,.

(1) Jp(0) =1 and J,(0) =0if @ > 0.

(2) Jn(z) is an even function if n € Z* is even and J, () is an odd function in
n is odd.

3) J_p(z) = (=1)"J, () for n € Z+.

o) = —2 *Joy1 ().

_ % (Jar(2) = Jas1(x)).

The first two properties are easy to obtain from the series representation of J,,
and the third has already been verified.
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Proof of 4. Multiply the series representation of J, by = and differentiate

d o IR G Vi B
% ((E Ja(x)) Z 'F(]+O[+1) 22]—&-0(

] 1

2j—1

1)’ T
; ]—1'Fj+a—|—1)223 I+a

= (—1) 2%+
-7 Z(]—I)T( +a+1)(2)

Js (—1)k+1 2\ 2k+(a+1)
h Zk'l“ (k+1+ (a+1)) (5)

:_xi JoHrl( )

Proof of 5. Left as an exercise

Proof of 6. We have (take into account properties 4 and 5)

% (Jo(z)) = % (2% (27 %Ja(2))) = az® " (27 Ju(2)) + xo‘% (z7%Ja(z))
=azr ' Jo(2) + 2% (27 Jag1(2))
= az 'y (x) — Jai1(z)
Similarly

d d , 0, o B ol s o 0 d .
@) = (7 @ a@) = —aa™ T (@ a(a) + 270 (0o (a)

= —ax ', (z) + 27 (20 1 (2))
= —ax  Ju(x) + Jo1(x)

By adding the two expressions we get

2 (Jal@) = Ju1(2) — Jecra(a)

Proof of 7. It follows from the proof of 6. that

d

= Ua(@) + 027 a(@) = Jaa ()
i

7= (Ja(@) — aa™ o (@) = —Jasa (@)
We get, by subtraction,
202 Jo(2) = Ja—1(2) + Jag1(2)

Proof of 8. It follows from property 4 that
d
/ & i1 (¢)de = — / & (o ale)) dr = 2 o) + C
Proof of 9. Left as an exercise.
[ 2
Example 1. We have proved in Proposition 2 that J; 5(z) = — sinz. In one
0

[ 2
of the exercises you will be asked to prove that J_; /o(x) = |/ — cosz We can use
T
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property 7 with o = 1/2 to deduce that

1
Taja(@) + J1p2() = —Jia(w)

Thus,

5 /4
J3ja(x) =1/ — (smx —cosa:) .

T T

Similar arguments can be used to prove that Jy(1/2) is an elementary function.
Example 2. We can use property 5 with a =1 to get
(xJ1(2)) = ado(z) & zJi(z)+ Ji(z) = 2Jo(x)

or Jl (x)

xT

Ji(x) = Jo(x) —

The following table lists the values Jo(z) and of Jy(z) for some values of x
between 0 and 10.

T 0 0.5 1.0 1.5 2.0 2.5 3.0
() | 1.0000 | 0.9385 | 0.7652 | 0.5118 | 0.2239 | -0.0484 | -0.2601
(x) 0 0.2423 | 0.4401 | 0.5579 | 0.5767 | 0.4971 | 0.3391
x 3.5 4 4.5 5 5.5 6 6.5
(z) | -0.3801 | -0.3971 | -0.3205 | -0.1776 | -0.0068 | 0.1506 | 0.2601
(z) | 0.1374 | -0.0660 | -0.2311 | -0.3276 | -0.3414 | -0.2767 | -0.1538
x 7 7.5 8 8.5 9 9.5 10
(z) | 0.3001 | 0.2663 | 0.1717 | 0.0419 |-0.0903 | -0.1939 | -0.2459
() | -0.0047 | 0.1352 | 0.2346 | 0.2731 | 0.2453 | 0.1613 | 0.0435

&

S&

Sls

By repeated use of property 7, we can get J,(z) for any integer n once Jy(x)
and Ji(x) are known.

Example 3. Let use the table to find J4(3.5). We have Jy(3.5) = —0.3801 and
J1(3.5) = 0.1374. By using property 7 with o = 1, then o« = 2, 3, and 4, we get

2

T2(3.5) + Jo(3.5) = 5= J1(3.5) J2(3.5) = 0.4586
A

T5(3.5) + J1(3.5) = 5= J2(3.5) J3(3.5) = 0.3868

T4(3.5) + 2(3.5) = 5= Ja(3.5) Ja(3.5) = 0.2044

Example 4. We use the integral property 8 and integration by parts to find the
following integral

/x*2J5(x)dx :/xQ(x*‘ng,(m))d:c
=22 (—z 4 Jy(z)) + /(2:0)9374J4(x)dz

= —x_2J4(q;) +2 $_3J4($)dl‘
= a2 Jy(x) + 203 J3(x) + C
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5. AN INTEGRAL REPRESENTATION OF J, ()

There is an interesting representation of the Bessel functions of the first kind with
integer order n in terms of a definite integral. We have the following proposition.

Proposition 3. Forn € Z, we have

1 ™
Jp(x) = 7/0 cos (nf — xsin @) db .

™

Proof. Recall the Taylor expansion of the exponential function

— -

e = Z 7l vzeC.
3=0
(the series converges uniformly and absolutely for |z| < R for every R > 0). We
have then

N _ 2 (=1)7 sxN\I
xt/2 _ Y el x/2t __ i
=3 '!<2) and ™7/ =3 it (2) '

i=0/ i=0
The product is

eSS ) G () - S8 ity ()
=0 k=0

=0 k=0

We rewrite this relation as a power series in ¢ (so the coefficients will depend on

oo 1 o0
e(x/Z)(t—(l/t)) — Z Ci”(‘r)tin + Co(fL') + Z Cn(:v)t” )
n=1

n=1
We need to show that Jy,(z) = Cy,(x). The coefficient Cy,(z) is obtained from the
double series by grouping all the coefficients of ™. Thus all term with j — k = m:

(—1)k x\ Itk
Omla)= >, G (kD (5)

j—k=m, j,k>0

or equivalently (by setting k = j —m),

The last series is precisely J_,,(x). We have then
Cm(x) = (_1)m']—m(x) = Jm(l‘) .

The expansion of e(@/2(t=1/t) ig therefore

s} _1)n
/D= = Jo(z) + 3 Ju(a) {t’ur ( tn) } .
n=1

Now we evaluate the left side and the right side of the above expression for ¢t =
e = cosf +isinf. For n € Zt, we have

(=)™ einf 4 (1)nemind — { 2 cos(nd) if n = 2p is even

et tn 2 sin(nf) if n=2p+11isodd
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and
@/ E=(/1) — gizsing _ cog(zsin ) + isin(z sin6) .

It follows that

cos(zsin @) +isin(z sin b) x)+2 ZJgp cos(2pf) + QZZJQPJ,_l x)sin(2p+1)6

p=0

By equating the real and imaginary parts, we get
cos(zsinf) = )+2 Z Jop(x) cos(2ph)
sin(xsinf) = QZJQPJ’_]_ sin(2p + 1)0
Recall the orthogonality of the trigonometric system

2 [T 2 (1 ifj=k,
;/0 cos(y@)cos(k@)—;/o cos(gH)cos(kQ)—{ 0 itk

By using these orthogonality relations and the above series, we get

s

l/cos(msin@) cos(nf)df = 2 / [ +ZJ2P cos 2p9)] cos(nb)df
0

In(2) 1f n is even,
0 if n is odd.

Similarly,

sin(n#)do

1 ™
- /Osm(sc sin ) sin(né)dé / [Z Jop+1(x)sin(2p + 1)0
_ { JIn(x) if n is odd,

0 if n is even.

By adding these relations we get for n € Z that

% /Tr [cos(z sin 0) cos(nd) + sin(z sin 0) sin(nd)] df = J,,(x)
0

which proves the proposition.
A immediate consequence of the integral representation is the following

Corollary. For every n € Z, we have
[Jn(z)] <1, vz e R
and

lim J,(z)=0.

T—00
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6. EXERCISES

Exercise 1. The table bellow lists approximate values of the Gamma function
for values of x in the interval [0, 1]. Use the table together with the fundamental
property of the Gamma function to find the following values

'(9.45), I'(23.10), I'(6.05), I'(4.85), I'(8.85),
I'(=0.75), I'(-4.65), I'(—0.01), I'(—2,85), I'(~3.75).

x 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 0.30 | 0.35 | 0.40 | 0.45 | 0.50

['(xz) | 19.470 | 9.513 | 6.220 | 4.591 | 3.626 | 2.992 | 2.546 | 2.218 | 1.968 | 1.773

x 0.55 | 0.60 | 0.65 | 0.70 | 0.75 | 0.80 | 0.85 | 0.90 | 0.95 | 1.00

I'(xz) | 1.616 | 1.489 | 1.385 | 1.298 | 1.225 | 1.164 | 1.113 | 1.069 | 1.032 | 1.00

Exercise 2. The aim of this exercise is to establish the formulas
F F 7T/2
L)T(y) = 2/ cos®* 1 9sin® "1 0dh x>0,y>0 (%)
Iz +y) 0
1. Show that

Cor = [t [T [ / e gy

(Hint: consider the substitutions s = u? and t = v?
2. Use polar coordinates u = rcosf, v = rsinf to establish formula (k).
3. Use formula (x) to establish the following formula (j, k € Z*)

/2 _ (G—D(k—1)!
2j—1 2k—1 _\J : :
A cos 0 cos 0do YT Gty 1)

2 1
4. Use formula () together with I'(j + (1/2)) = 22](]1())\f to establish
J

LEE (27 — Dk =)k +j—1)!
2j 2k—1 _\4 : : J :
/0 cos™ 6 cos 0do 221(j — )2k £ 2j —1)!

(Hint: Use x = j + (1/2) and y = k in formula (x).)
5. Use the table of values of the Gamma function given in exercise 1 to find an
approximation of the integral

w/2
/ cos™ 0sin® 0d6
0

Exercise 3. The Psi function is defined as the logarithmic derivative of I":

IM(x)
q] =
Use the fundamental property of I' to show that W satisfies
1

Exercise 4. Write the first five terms of the series representation of Jy; Ji; Jo;
J_35 J3/45 Jiys-
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Exercise 5. Use the series expansion of J_; /o to establish

2
J_1y2(x) =4/ —CoST .

You can also establish this formula by using property (5) with o = 1/2 and

[ 2 .
Jijo() = —sing

Exercise 6. Repeat the steps of example 1 to show that

COoSsT

J_3/2(z) = — i (

+ sin x) .
T

Exercise 7. Find the expressions of J5/5 and of J_5 /5.

Exercise 8. Use the table of values of Jy and J; to find the following values

J2(.5),  J3(5), Ja(8.5)

Exercise 9. Prove that / sJo(s)ds = xJ1(x).
0

Exercise 10. Find the integrals
/zgjg(x)da;, /x73/2J5/2(z)das, /:175J2(x)d93
Exercise 11. Find the integrals
/wQ_“JaH(x)dx, /Jl(x)dx, /Jg(x)dx
Exercise 12. Find the integrals
[ 1)~ dsda, [ stasyds
0

Exercise 13. Show that
RO&

R
/ 2 Jo—1(Ax)dr = — Jo(AR)
0 A

Exercise 14. Show that

227" (x) — (a® — a— 2?)Jo(z) — 2J0q1(z) =0
(Hint: Use Bessel’s equation and property 4)
Exercise 15. Show that

/I J3(s)ds =1 — Ja(x) — 2J1(x)

T

(Hint: Start with J3(s) = s?(s72J3(s)) and use integration by parts)
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Exercise 16. Use the expansion of cos(zsin#) involved in the proof of Proposition
3 to show that

cosx = Jo(z) + 22(—1)jJ2j(x)
j=1

sine =2Y (—1)7 Joj11(z)
j=0
(oo}
1= Jo(.l?) + 2 Z Jgj(l‘)
j=1

Exercise 17. Use the integral representation of J,(z) to show that

J! (z) = l/ sin(nf — x sin()) sin 6 do
0

s



