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G 5.5 LAPLACE'S EQUATION: SOLUTIONS AND QUALITATIVE PROPERTIES

©-2.5.1 Laplace's Equation Inside a Rectangle

In order to obtain more practice, we consider a different kind of problem that can be ana-
lyzed by the method of separation of variables. We consider steady-state heat conduction
in a two-dimensional region. To be specific, consider the equilibrium temperature inside
& rectangle (0 < z < L, 0 < y < H) when the temperature is a prescribed function
of position (independent of time) on the boundary. The equilibrium temperature u{z, y)
satisfies Laplace’s equation with the following boundary conditions:

(25.1)

u(0,y) = g1{y) (2.5.2)

w(Lyy) = (2.5.3)

u(z,0) = (2.5.4)

BC4: | u(z, H) (2.5.5)

whete fi(z), fo(), 1(y), and go(y) are given functions of  and y, respectively. Here the
partial differential equation is linear and homogeneous, but the boundary conditions, al-
though linear, are not homogeneous. We will not be able to apply the method of separation
of varisbles to this problem in its present form, because when we separate variabies, the
boundary value problem (determining the separation constant) must have homogeneous
. boundary conditions. In this example, all the boundary conditions are nonhomogeneous.
We can get around this difficulty by noting that the original problem is nonhomogeneous
due to the four nonhomogeneous boundary conditions. The idea behind the principle of
superposition can be used sometimes for nonhomogeneous problems (see Exercise 2.2.4).

We break our problem into four problems, each having one nonhomogeneous condition.
We let

U(SL‘, y) = 1':’1{33: y) + ’UQ("IJ, y) -+ US(Q:! y) + U4($, y)’ (256)

. where each u;(z,y) satisfies Laplace’s equation with one nonhomogeneous houndary
condition and the related three homogeneous boundary conditions, as diagrammed in
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u= fylz} Uy =10 up= 0 ug= folz) ny =0
uF goly) o uy % g5(1) ugF 0 g O
Vi=0| = (Viy=0| t+ |Fly=0] + [Vhg=0] + |Vi=0
u g () uy F 0 up 0 T uy F 91 (¥)
w=fi{z) = f{w) up=0 ug=0 uy=0

FIGURE 2.5.1 Laplace’s equation inside a rectangle.

Fig. 2.5.1. Instead of directly solving for u, we will indicate how to solve for u;, us, us,
and uy. Why does the sum satisfy our problem? We check to see that the PDE and the fonr
nonhormoegeneous BCs will be satisfied. Since uy, wus, ua, and uy satisfy Laplace’s equation,
which is linear and homogeneous, u = uy + ug + ug + 14 also satisfies the same linear and
homogeneous PDE by the principle of superposition. Atz =0: w1 =0, 42 =0, ug =0,
and ug = g1{y). Therefore, at z = 0 u = uy + ugp + uz + wg = g1(y), the desired non-
homogeneous condition. In a similar manner we can check that all four nonhomogeneous
conditions have heen satisfied.

The method to solve for any of the u;{z,y} is the same; only certain details differ.
We will solve only for uy(x, y) and will leave the rest for the Exercises:

82’&4 62'11,4

PDE: | -5 + 5 = O | (2.5.7)

BCL: | ua(0,9) = q1(y) (2.5.8)

BC2: | ug({L,y) = 0 (2.5.9)

. BC3: | uglz,0) = 0 (2.5.10)

wa(e, H) (2.5.11)
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We propose to solve this probiem by the method of separation of variables. We begin by
ignoring the nonhomogeneous condition ug(0,¥) = ¢ (3). Eventually, we will add together
product solutions to synthesize g1 (y). We look for produet solutions

ug(z,y) = h(z)d(y)- (2.5.12)

From the three homogeneous boundary conditions, ;rve see that
R(L) =10 (2.5.13)
$(0) =0 (2.5.14)
d{H) = (2.5.15)
The y-dependent solution ¢{y) has two homogenecus boundary conditions and will be-
come an eigenvalue problem in y, whereas the z-dependent solution h(z) bas only one

homogeneous boundary condition. If {2.5.12) is substituted into Laplace’s equation, we
obtain

d*h d*¢
Qs(y)&";ﬁ + hiz d_y? =0.

The variables can be separated by dividing by h{z)é(y), so that

1d*h  1d%¢

hdz? = ¢dy?
The left-hand side is a function only of , while the right-hand side is a function only
of y. Both must equal a separation constant. Do we want to use —X or A? One will
be more convenient. If the separation constant is negative (as it was before), (2.5.16)
implies that h(z) oscillates and ¢(y) is composed of exponentials. This seems doubtful,
since the homogeneous boundary conditions (2.5.13)-(2.5.15) show that the y-dependent
solution satisfies two homogeneous conditions: ¢(y) must be zero at y = 0 and at y = H.
Exponentials in y are not expected to work. On the other hand, if the separaiion constant
is positive, (2.5.16) implies that h(z) is composed of exponentials that and &(y) oscillates.
This seems more reasonable, and we thus introduce the separation constant A (but we do
not assume A > 0):

(2.5.16)

1d%h 1d%¢
| Rt A (2.5.17)
This results in two ordinary differential equations:
d*h
dz?
d?¢
dy?
The z-dependent problem is not a boundary value problem, since it does not have two
homogenecus boundary conditions:

AR

= —Ap.

d?h
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(L) =0. (2.5.19)

However, the y-dependent problem is a boundary value problem and will be used to
determine the eigenvalues A (separation constants):

P2y

Gr = (2.5.20)
(2.5.21)
$(H) = 0. (2.5.22)

"This boundary value problem is one that has arisen before, but here the length of
the interval is H. All the eigenvalues are positive, A > 0. The eigenfunctions are clearly
sines, since ¢{0) = 0. Furthermore, the condition ¢(H) == 0 implies that

- ()
H n=1,2, 3, ... (2.5.23)

bly) = sin =2

"

To obtain product solutions we now must solve {2.5.18) with (2.5.19). Since A = (nn/H 32,

j_ig - (%)2 b (2.5.24)

The general solution is a linear combination of exponentials or a linear combination of hy-
perbolic functions. Either can be used, but neither is particulazly suited for solving the ho-
mogeneous boundary condition h{L) = 0. We can obtain our solution more expeditiously
if we note that both coshnn{z — L}/H and sinhnn(z — L)/H are linearly independent
solutions of {2.5.24). The general solution can be written as a linear combination of these
two:

h(z) = a; cosh ELj}i(:z: ~ L} + ag sinh EE(a: - L), (2.5.25)

H H

although it should now be clear that h{L) = 0 implies that a; = 0 (since cosh0 = 1 and
sinh 0 = 0). As we could have guessed originally,

' h{z) = az sich %(m ~I). (2.5.26)
The reason (2.5.25) is the solution (besides the fact that it solves the DE) is that it is

a simple translation of the more familiar solution, coshnrz/L and sivhnrz/L. We are
allowed to translate solutions of differential equations only if the differential equation
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does not change (said to be invariant) upon translation. Since (2.5.24) has constant
coefficients, thinking of the origin being at z = L (namely, 2’ = = — L) does not affect
the differential equation, since d2h/dz'> = (nm/H)?h according to the chain rule. For
example, coshnmz’/H = coshnn(x — L)/ H is & solution. o

Product solations are -

ny

L
i sinh Wﬁ-(x - L. (2.5.27)

ug{z,y) = Asin
You might now check that Laplace’s equation is satisfled as well as the three required
homogeneous conditions. It is interesting to note that one part (the y) oscillates and the
other (the x) does not. This is a general property of Laplace’s equation, not restricied to
this geometry (rectangle) or to these boundary conditions.

We want to use these product solutions to satisfy the remaining condition, the non-
homogeneous boundary condition %4(0,y) = g:(y). Product solutions do net satisfy non-
homogeneous conditions. Instead, we again use the principle of superposition. If (2.5.27)
is a solution, so is

us(@,y) = > Ansin %ﬁi sinh %1'"(:5 ~ L. (2.5.28)
=] .

Evaluating at = = 0 will determine the coefficients A, from the nonhomogeneous bound-
ary condition:
(=)
. nRY ., . NT
g1y} = Z Ay sin _Eli sinh ﬁ(_L)_

n=1

This is the same kind of series of sine functions we have already briefly discussed, if we
associate A, sinhnr(—~L)/H as its coeffieients. Thus (by the orthogonality of sinnwy/H
for y between 0 and H),

nmy

., T 2 H .
Ansmh?f—(—L)—Ejo g1{y)sin i dy.

Since sinhnr{~L)/H is never zero, we can divide by it and obtain finally a formula for
the coefficients:

An

2 A ’J’I,’.'T‘y
N in = dy. 2.5.29
Hsinhnn(-Lj/H /0 g1{y)sin T dy ( )

Eequation (2.5.28) with coefficients determined by (2.5.29) is the solution only for ua(z, y).
The original u{z,y} is obtained by adding together four such solutions.
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Laplace’s Equation Inside a Circular Disk

Suppose that we had 2 thin cirenlar disk of radius @ (with constant thermal properties and
no sources) with the temperature prescribed on the boundary, as illustrated in Fig. 2.5.2.
If the temperature on the boundary is independent of time, then it is reasonable to
determine the equilibrium temperature distribution. The temperature satisfies Laplace's
equation, V?u = 0. The geometry of this problem suggests that we use polar coordinates,
o that u = u{r, ). In particular, on the circle, © = a, the temperature distribution is a
prescribed function of 8, u{a,8) = f(#). The problem we want to soive is

18 du 1 9%
. 2, — zz i [
PDE: { Veu= -5 (rar) + 5 0 {2.5.30}
BC: | u(a,0) = f(8). {2.5.31)
FIGURE 2.5.2 Laplace’s equation u{a, ) = f(8)

inside & cireular disk.

At first glance it would appear that we cannot use separation of variables because there are
no homogeneous subsidiary conditions. However, the introduction of polar coordinates re-
quires some discussion that will iluminate the use of the method of separation of variables.
If we solve Laplace’s equation on a rectangle (see Section 2.5.1;, 0<2 < [, 0 Sy < H,
then conditions are necessary at the endpoints of definition of the variables: © = 0, L and
y = 0, H. Fortunately, these coincide with the physical boundaries. However, for polar
coordinates, 0 < r < g and —7 < # <« {(where there is some freedom in our definition
of the angle #). Mathematically, we need conditions at the endpoints of the coordinate
system, r = 0, a and 6 = —m, w. Here, only r = a corresponds to a physical boundary.
Thus, we need conditions motivated by considerations of the physical problem at r = 0
and at & = +x. Polar coordinates are singular at » = 0; for physical reasons, we will
prescribe that the temperature is finite or, equivalently, bounded there:

boundedness at origin | |u(0, §)| < co. (2.5.32)

Conditions are needed at 8 = 4# for mathematical reasons. It is similar to the circular
wire situation. § = —r corresponds to the same points as # = . Although there really
is not a boundary, we say that the temperature is continuous there and the heat flow in
the #-direction is continuocus, which imply
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w(r, —m) = ulr,”)

periodicity

O JOu
%{T> Wﬂ-) - é"é(ra TT'),

as though the two regions were in perfect thermal contact there (see Exercise 1.3.2).
Equations (2.5.33) are called periodicity conditions; they are equivalent to u(r,f) =
u{r,# + 2x). We note that subsidiary conditions {2.5.32) and {2.5.33) are all linear and
homogeneous {it’s easy to check that u = ( satisfies these three conditions). In this
form, the mathematical problem appears somewhat similar to Laplace’s equation inside
a rectangle. There are four conditions. Here, fortunately, only one is nonhomogeneous,
u(a,§) = f{8). This problem is thus suited for the method of separation of variables.

We look for special product solutions,
u(r, @) = ()G (r), (2.5.34)

that satisfy the PDE (2.5.30) and the three homogeneous conditions (2.5.32) and (2.5.33).
Note that {2.5.34) does not satisfy the nonhomogeneous boundary condition (2.5.31).
Substituting {2.5.34) into the periodicity conditions shows that

¢{-m) = ¢(m)

@
a6

N (2.5.35)
(_ﬂ-) - Eé(ﬂ-)r

the #-dependent part also satisfies the periodic boundary conditions. Thus, ¢(8) will
satisfy an eigenvalue problem, where & is the angular variable. The product form will
satisfy Laplace’s equation if

rdr T-("iu:r'“

12 (48 :

1 d?
) #(0) + 5 Gr) 7 =0.

The variables are not separated by dividing by G{r)¢(8) since 1/r? remains multiplying
the f-dependent terms. Instead, divide by (1/72)G{(r)¢(6), in which case

rd [ dG\  1d%
s (T—d}—> ——2 = (2.5.36)

The separation constant is introduced as A (rather than —2) since there are two homoge-
neous conditions in 8, {2.5.35), and we therefore expect oscillations in 8. Equation (2.5.36)
yields two ordinary differential equations. The boundary value problem to determine the
separation constant is




74 Chapter 2 Methed of Separation of Variables

d?¢
Eé-z— = “Aﬂb
(2.5.37)
$(—m) = é(x)
dop _do
“d“g(“ﬂ) = ‘&g(ﬂ)-

The eigenvalues A are determined in the usual way. In fact, this is one of the three
standard problems, the identical problem as for the circular wire {with L == 7). Thus, the
eigenvalues are

A:(%ﬂzxﬁ, (2.5.38)

with the corresponding eigenfunctions being both
sinnd and cosné. (2.5.39)

The case n = 0 must be included (with only a constant being the eigenfunction).
The r-dependent problem is

rd e )
Gar (T ) " (25.40)
which when written in the more usual form becomes

,2G dG

r + - —n*G =10 (2.5.41)

Here, the condition at r = 0 has already been discussed. We have prescribed |u{0, 8} < oo,
For the product solutions, u(r,#) = &#(8)G(r), it follows that the condition at the origin
is that G{r) must be bounded there,

G(0)] < oo, (2.5.42)

Equation (2.5.41) is linear and homogeneous but has nonconstant coefficients. There
are exceedingly few second-order linear equations with nomconstant coefficients that we
can solve easily. Equation (2.5.41) is one such case, an example of an equation known
by a number of different names: equidimensional or Cauchy or Euler. The simplest
way to solve (2.5.41} is to note that for the linear differential operator in (2.5.41}, any
power G = rP reproduess itself.5 On substituting G = v? into (2.5.41), we determine that
[plp—1) +p— n?]rP = 0. Thus, there usually are two distinet solutions

p=in,

5for conssant-coefficient linear differential operators, exponentials reproduce themselves.
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except when n = 0, in which case there is only one independent sclution in the form 7.
For n # 0, the general solution of (2.5.41) is '

G=cr™ +er™™, (2.5.43)

For n = 0 (and n = 0 is important since A = 0 is an eigenvalue in this problem), one
solution is r% = 1 or any constant. A second solution for n = 0 is most easily obtained from
(2540} If = 0, £ (r4&) = 0. By integration, » dG/dr is constant, or, equivalently,
d(/dr is proportional to 1/r. The second independent solution is thus lnr. Thus, for

n == 0, the general solution of (2.5.41) is
G=¢ +clnr. (2.5.44)

Equation (2.5.41) has only one homogeneous condition to be imposed, |G{0)} < oo, 50 it
is not an eigenvalue problem. The boundedness condition would not have imposed any
restrictions on the problems we have studied previously. However, here (2.5.43) or (2.5.44)
shows that solutions may approach oo as r — 0. Thus, for |G(0)] < 00,c; = 0 in {2.5.43)
and & = 0 in (2.5.44). The r-dependent solution (which is bounded at » = 0) is

G(T) :C]Tni n;_: 0}

where for n = 0 this reduces to just an arbitrary constant.
Product solutions by the method of separation of variables, which satisfy the three
homogeneous conditions, are

rcosnd{n = 0) and r"sinnf(n > 1).
Note that as in rectangular coordinates for Laplace’s equation, oscillations occur in one

variable (here 8} and do not occur in the other variable (r). By the principle of superpo-
sition, the following solves Laplace's equation inside a circle;

0<r<a

o0 o
u(r,8) = ZAnr” cosnf + ZB,;T” sinnd, S,

n==0 n=1

In order to solve the nonhomogeneous condition, u{a,8) = F{@),

o0 o0
f(@) = Z Ana” cosnf + Z Bra"sinng, —r<8<7. (2.5.46)

] n=l

The prescribed temperature is a linear combination of all sines and cosines (including a
constant term, n = 0). This is exactly the same question that we answered in Section 2.4.2
with L = 7 if we let A,a™ be the coefficient of cos n@ and B,,a™ be the coefficient of sin né.
Using the orthogonality formulas, it follows that
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1 s

Ao = 5= | 1) a0
(n>1) Apa® = ;1; [(8) cosnd do (2.5.47)

B,a" = %/ F(9 sinnd 48,

Since a™ # 0, the coefficients A, and B, can be uniquely solved for from (2.5.47).

Equation (2.5.45) with coefficients given by (2.5.47) determines the steady-state
temperature distribution inside a circle. 'The solution is relatively complicated, often re-
quiring the numerical evaluation of two infinite series. For additional interpretations of
this solution, see Chapter 9, on Green’s functions.

Fluid Flow Outside a Circular Cylinder (Lift)

In heat flow, conservation of thermal energy can be used to derive Laplace’s equation
%724 = 0 under certain assumptions. In Auid dynamics, conservation of mass and conser-
vation of momentum can be used to also derive Laplace’s equation:

Vi =0,

in the following way. In the Exercises, it is shown that conservation of mass for & fuid
along with the assumption of a constant mass density p yields

dv

¥V . = 0, or in two dimensions = + — =0,
dr Oy

where the velocity has - and y-components u = (u,v). A stream function ¢ is often
introduced that automatically satisfies (2.5.48):

u= - and v = ——5—. \ (2.5.49)

Often streamlines (1) = constant) are graphed that will be parallel to the fluid flow. It
can be shown that in some circumstances the fluid is irrotational (V x u = () so that the
gtream function satisfies Laplace’s equation:

(2.5.50)

_The simplest example is a constant flow in the z-direction w = (U, 0}, in which case

the stream function is v = Uy, clearly satisfying Laplace’s equation.
As a first step in designing airplane wings, scientists have considered the flow around
a circular eylinder of radius a. For more details we refer the interested reader to Acheson
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[1990]. The velocity potential must satisfy Laplace’s equation, which as before in polar
coordinates is (2.5.30). We will assume that far from the cylinder the flow is uniform, so
that as an approximation for large r,

= Uy=Ursing, | (2.5.51)

since we will use polar coordinates. The boundary condition is that the radial component
of the fluid fiow must be zero at r = a. The fluid flow must be parallel to the boundary,
and hence we can assume

w{a,0) = 0. (2.5.52)
By separation of variables, including the n = 0 case given by (2.5.44),
- o0
Y(r, @)=+ lnr+ Z{Anr” + Bur~ ™) sinnd, (2.5.53)
=l

where the cosné terms could be included (but would vanish). By applying the boundary
condition at r = a, we find

cgt+erlna=0
A+ Bra™" s (),

so that

. o« 2n
W(r,0) = c; In 2 +>  An (r” - %) sin né. (2.5.54)
nm]

In order for the fluid velocity to be approximately & constant at infinity with 4 =~ Uy =
Ursing for large r, 4, =0 for n > 2 and A4; = U. Thus,

2
W(r,6) = 1n£- +U (r - 9;») sind. (2.5.55)

It can be shown in general that the fluid velocity in polar coordinates can be obtained
from the stream function: u,. = %%%,ue = —%. Thus, the f-component of the fluid
velocity is up = w%} - U{1 g;)sin #. The circulation is defined to be fﬂ% ugr df =
~2mc;. For a given velocity at infinity, different flows depending on the cireulation around
a cylinder are illustrated in Fig. 2.5.3.

The pressure p of the fluid exerts a force in the direction opposite to the outward
normal to the cylinder (£, ) = (cos 8, sin ). The drag (z-direction) and Yift (y-direction)
forces (per unit length in the z direction) exerted by the fluid on the cylinder are

2w
F= mf p{cos#,s8in 8} adb. (2.5.56)
o
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FIGURE 2.5.3 Flow past cylinder and lift = 2mpe U,

For steady flows such as this one, the pressure is determined from Bernoulli’s condition
1 2
p+gp |w|” = constant. (2.5.57)

Thus, the pressure is lower where the velocity is higher. If the circulation is clockwise
around the cylinder (a negative circulation), then intuitively (which can be verified) the
velocity will be higher above the cylinder than below, and the pressure will be lower on the
top of the cylinder, and hence lift (a positive force in the y-direction) will be generated.
At the cylinder u, = 0, so that there ju|® = u2. It can be shown that the z-component of
the force, the drag, is zero, but the y-component, the lift, is given by (since the integral
involving the constant vanishes)

1 2 C1 CE? 2
Fy,= -ipfo [———T— - (1 + ;5) sm@} sin 6 a dff (2.5.58)
2w
o p%UQ / sin? fadf = p2wey U, (2.5.59)
0

which has been simplified since [ sin@ dff = 2Tsin®6 df = O due to the oddness
of the sine function. The lift vanishes if the circulation is zero. A negative circulation
(positive ¢1) results in a lift force on the cylinder by the fluid.
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In the real world, the drag is more complicated. Boundary layers exist due to the
viscous nature of the flnid. The pressure is continuous across the boundary layer so that
the preceding analysis is still often valid. However, things get much more complicated
when the boundary layer separates from the cylinder, in which case’ a more substantial
drag force oceurs (which has been ignored in this elementary treatment). A plane will fly
if the lift is greater than the weight of the plane. However, to Qy fast, a powerful engine
is necessary to apply a force in the z-direction to overcome the drag.

Qualitative Properties of Laplace's Equation

Sometimes the method of separation of variables will not be appropriate. If quantitative
information is desired, numerical methods {see Chapter 6) may be necessary. In this sub-
section we briefly describe some qualitative properties that may be derived for Laplace’s
equation. :

Mean value theorem. OQur solution of Laplace’s equation inside a cirele, ob-
tained in Section 2.5.2 hy the method of separation of variables, yields an important
result. If we evaluate the temperature at the origin, r = 0, we discover from (2.5.45) that

10, 0) = ag = -2-177_ / " 16) db;

the temperature there equals the average value of the temperature at the edges of the
circle. This is called the mean value property for Laplace’s equation. It holds in general
in the following specific sense. Suppose that we wish to solve Laplace’s equation in any
region R (see Fig. 2.5.4). Consider any point P inside R and a circle of any radius rg
{such that the circle is inside R). Let the temperature on the circle be f(8), using polar
coordinates centered at P. Qur previous analysis still holds, and thus the temperature
at any point is the average of the temperature along any circle of radius ry
{lying inside R) centered at that point.

FIGURE 2.5.4 Circle within any
region.

Maximum principles. We can use this to prove the maximum principle for
Laplace’s equation: In steady state, assuming no sources the temperature cannot
attain its maximuin in the interior (unless the temperature is a constant everywhere).
The proof is by contradiction. Suppose that the maximum was at point P, as illustrated
in Fig. 2.5.4. However, this should be the average of all points on any circle {consider the
circle drawn). It 18 impossible for the temperature at P to be larger. This contradicts the
original assumption, which thus cannot hold. We should noet be surprised by the maximum
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principle. If the temperature was largest at point P, then in time the concentration of heat
energy would diffuse and in steady state the maximum could not be in the interior. By
letiing ¢ = —u, we can also show that the temperature cannot attain its minimum in the
interior. It follows that in steady state the maximum and minimum temperatures

occur on the boundary.

Well-posedness and uniqueness. The maximum principle is a very important
al equatious, especially in establishing qualita-

tool for further analysis of partial differential
tive properties (see, e.g., Protter and Weinberger [1_967}). We say that a problem is well
depends continuously on the nonhomogeneous

posed if there exists a unique solution that
data (i.e., the solution varies & small amount if the data are slightly changed). This is

an important concept for physical problems. If the solution changed dramatically with
only a small change in the data, then any physical measurement would have to be exact
in order for the solution to be reliable. Fortunately, most standard problems in partial
differential equations are well posed. For example, the maximurn principle can be used to
prove that Laplace’s equation Viu = 0 with u specified as u = f(z) on the boundary is

well posed.

Suppose that we vary the boundary data a small amount such that

V=0 with v=gl)

(1) everywhere on the boundary. We

on the boundary, where g{z) is nearly the same as f
= y — v. Due to the linearity,

consider the difference between these two solutions, w
T =0 with w= f(z)-g(@)

and minimum) principles for Laplace’s equation imply

on the boundary. The maximurm (
Thus, at any point inside,

that the maximum and minimum occur On the boundary.

min(f{z) — gl{z)) Sw = max{f(z) — g(x)). - (2.5.60)
() everywhere, w is small, and thus the solution v is

Since g(x) is nearly the same as f
Laplace’s equation slightly varies if the houndary

nearly the same as u; the solution of

data are slightly altered.
We can also prove that the solution of Laplace’s equation is unique. We prove this by

contradiction. Suppose that there are two solutions, v and v satisfying Laplace’s equation

that satisfy the same boundary condition fl.e., let (f(z) = g(x)}]. If we again consider the

difference (w = u — v), then the maximum and minimum principles imply [see (2.5.60))

that inside the region
- 0<w<0.

and thus u = v, proving that i a golution

uniqueness and continuous dependence on
dary is a well-posed

We conclude that w = 0 everywhere side,
exists, it must be unigue. These properties (
the data) show that Laplace’s equation with u specified on the boun

problem.
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Solvability condition. If on the boundary the heat flow —KyVu % is speci-
fied instead of the ternperature, Laplace’s equation fnay have no solutions [for a one-
dimensional example, see Exercise 1.4.7(b)]. To show this, we integrate V*u = 0 over the
entire two-dimensional region ’

0= /f% da dy = [[V.‘:(Vu) dz dy.

Using the (two-dimensional) divergence theorem, we conclude that (see Exercise 1.5.8)

= ’?{Vu - i ds. {2.5.61)

Since Vu 7t is proportional to the heat flow through the boundary, (2.5.61) implies that
the net heat flow through the boundary must be zero in order for a steady state to
exist. This is clear physically, because otherwise there would be a change (in time) of the
thermal energy inside, violating the steady-state assumption. Equation (2.5.61) is called
the solvability condition or compatibility condition for Laplace’s equation.

" EXERCISES 2.5 |
2.6.1, Solve Laplace’s equation inside a rectangle 0 < z < L, 0 <y < H, with the fol-
lowing boundary conditions [Hint: Separate variables. If there are two homogeneous
houndary conditions in g, let u(z, y) = h{z)é{y), and if there are two homogeneous
boundary conditions in z, let w{zr,y) = ¢(z)h{y).;:
#(a) ZL(0,y) =0, Z(Ly) =0, ulz,0)=0, u(z, H) = f(z)
(b} F2(0.y) = g(y), 2= (Ly) =0, w(x,0)=0, ulz, H) =0
w(e) Z2(0,9) =0, u(L,y)=g(y), ulz0) =0, u(z, H) =0
(@) w0.y) = g(y), w(Ll,y) =0, $(x,0) =0, u(m, H) =0
we) w(0y) =0,  wlly) =0,  u(z0 - (2,0 =0, uH)=[(z)
() w(0,9) = f(y), w(l,y)=0, e (2,0) =0,

. 0zx>»L/2
(8) F=0m =0, F=(Ly) =0, “(33’0):{1?@;2’ gy (x H) =0

(h) w(G,y} =0, u(L,y) = g('y}: w(z, 0} =10, u{z, H) =0
Consider u{e,y) satisfying Laplace’s equation inside a rectangie (0 < z <
y < H) subject to the boundary conditions

F(00) =0, FE(2,0)=0

S (Ly) =0, Fe(e.H) = f(a).




