
Python - Programming Assignment 4 - Advanced

Professor:

Dr. Joanna Bieri
joanna_bieri@redlands.edu

Directions: You will build a word guessing game! (Hangman)

Specifications:

•
• Your code should have a dictionary of secret words defined. Use the secret word as the key and then provide hints
for the word so that when you call my_words[‘word’] it returns a list of clues. The longer the better

• Give a prompt that asks the user if they want to play the game and explain the rules.
• If they say yes then

– Have your code randomly choose a word from the secret word dictionary keys and randomly print one of the
clues.

– Create a guessed letter list that matches the length of the secret word and allows you to fill in correct letters
In: my_string = ’hello’
letter_list = list(my_string)
print(letter_list)

Out: [’h’, ’e’, ’l’, ’l’, ’o’]

In: correct_letters = []
for ch in letter_list:

correct_letters.append(’--’)

print(correct_letters)

Out: [’--’, ’--’, ’--’, ’--’, ’--’]
– Now using the while loop allow the user to guess letters. Tell them if they get the letter wrong. If they get the letter

right then update the correct_letters list with the letters in the correct spots.
my word -> [’h’, ’e’, ’l’, ’l’, ’o’]

If user guesses ‘l’

[’--’, ’--’, ’l’, l’, ’--’]
– Keep track of the number of guesses and give a limit (you choose).
– Keep track of the letters they have guessed.
– Let the player quit if they want to.

• Print a message with the result of the game
• Your code should be a .py file
• Your code should run without errors
• Your code should use good python style - cleaned up, commented, etc.
• Your code should be submitted on time.

How can I know if my code is working? Try out the game with a list of only one possible secret word. Then see what your code
does if you guess the same letter twice, or quit, or get a letter right, etc.

Introduction to Programming in Python University of Redlands 1


